Proof of Theorem omlem1
Step | Hyp | Ref
| Expression |
1 | | ax-a2 31 |
. . 3
((a ∪ (a⊥ ∩ (a ∪ b)))
∪ (a ∪ b)) = ((a ∪
b) ∪ (a ∪ (a⊥ ∩ (a ∪ b)))) |
2 | | ax-a3 32 |
. . 3
(((a ∪ (a⊥ ∩ (a ∪ b)))
∪ a) ∪ b) = ((a ∪
(a⊥ ∩ (a ∪ b)))
∪ (a ∪ b)) |
3 | | ax-a3 32 |
. . 3
(((a ∪ b) ∪ a)
∪ (a⊥ ∩ (a ∪ b))) =
((a ∪ b) ∪ (a
∪ (a⊥ ∩ (a ∪ b)))) |
4 | 1, 2, 3 | 3tr1 63 |
. 2
(((a ∪ (a⊥ ∩ (a ∪ b)))
∪ a) ∪ b) = (((a ∪
b) ∪ a) ∪ (a⊥ ∩ (a ∪ b))) |
5 | | ax-a3 32 |
. . . . . . 7
((a ∪ a) ∪ b) =
(a ∪ (a ∪ b)) |
6 | | ax-a2 31 |
. . . . . . 7
(a ∪ (a ∪ b)) =
((a ∪ b) ∪ a) |
7 | 5, 6 | ax-r2 36 |
. . . . . 6
((a ∪ a) ∪ b) =
((a ∪ b) ∪ a) |
8 | 7 | ax-r1 35 |
. . . . 5
((a ∪ b) ∪ a) =
((a ∪ a) ∪ b) |
9 | | oridm 110 |
. . . . . 6
(a ∪ a) = a |
10 | 9 | ax-r5 38 |
. . . . 5
((a ∪ a) ∪ b) =
(a ∪ b) |
11 | 8, 10 | ax-r2 36 |
. . . 4
((a ∪ b) ∪ a) =
(a ∪ b) |
12 | | ancom 74 |
. . . 4
(a⊥ ∩ (a ∪ b)) =
((a ∪ b) ∩ a⊥ ) |
13 | 11, 12 | 2or 72 |
. . 3
(((a ∪ b) ∪ a)
∪ (a⊥ ∩ (a ∪ b))) =
((a ∪ b) ∪ ((a
∪ b) ∩ a⊥ )) |
14 | | orabs 120 |
. . 3
((a ∪ b) ∪ ((a
∪ b) ∩ a⊥ )) = (a ∪ b) |
15 | 13, 14 | ax-r2 36 |
. 2
(((a ∪ b) ∪ a)
∪ (a⊥ ∩ (a ∪ b))) =
(a ∪ b) |
16 | 4, 2, 15 | 3tr2 64 |
1
((a ∪ (a⊥ ∩ (a ∪ b)))
∪ (a ∪ b)) = (a ∪
b) |