Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > dp15 | GIF version |
Description: Part of theorem from Alan Day and Doug Pickering, "A note on the Arguesian lattice identity", Studia Sci. Math. Hungar. 19:303-305 (1982). (1)=>(5). (Contributed by NM, 1-Apr-2012.) |
Ref | Expression |
---|---|
dp15.1 | c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
dp15.2 | c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
dp15.3 | p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2)) |
Ref | Expression |
---|---|
dp15 | ((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 59 | . 2 (a2 ∪ (a0 ∩ (a1 ∪ b1))) = (a2 ∪ (a0 ∩ (a1 ∪ b1))) | |
2 | dp15.3 | . 2 p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2)) | |
3 | id 59 | . 2 (b0 ∩ (a0 ∪ p0)) = (b0 ∩ (a0 ∪ p0)) | |
4 | dp15.1 | . 2 c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) | |
5 | dp15.2 | . 2 c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) | |
6 | 1, 2, 3, 4, 5 | dp15lemh 1161 | 1 ((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-ml 1122 ax-arg 1153 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: dp53lema 1163 xdp53 1200 xxdp53 1203 |
Copyright terms: Public domain | W3C validator |