Proof of Theorem dp53lema
Step | Hyp | Ref
| Expression |
1 | | leo 158 |
. 2
b1 ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
2 | | leo 158 |
. . . . . 6
(b0 ∩ (a0 ∪ p0)) ≤ ((b0 ∩ (a0 ∪ p0)) ∪ b1) |
3 | | dp53lem.4 |
. . . . . . . . 9
p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2)) |
4 | 3 | lor 70 |
. . . . . . . 8
(a0 ∪ p0) = (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) |
5 | 4 | lan 77 |
. . . . . . 7
(b0 ∩ (a0 ∪ p0)) = (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) |
6 | | lear 161 |
. . . . . . . 8
(b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) ≤ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) |
7 | | lea 160 |
. . . . . . . . . 10
((a1 ∪ b1) ∩ (a2 ∪ b2)) ≤ (a1 ∪ b1) |
8 | 7 | lelor 166 |
. . . . . . . . 9
(a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) ≤ (a0 ∪ (a1 ∪ b1)) |
9 | | ax-a3 32 |
. . . . . . . . . 10
((a0 ∪ a1) ∪ b1) = (a0 ∪ (a1 ∪ b1)) |
10 | 9 | cm 61 |
. . . . . . . . 9
(a0 ∪ (a1 ∪ b1)) = ((a0 ∪ a1) ∪ b1) |
11 | 8, 10 | lbtr 139 |
. . . . . . . 8
(a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) ≤ ((a0 ∪ a1) ∪ b1) |
12 | 6, 11 | letr 137 |
. . . . . . 7
(b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) ≤ ((a0 ∪ a1) ∪ b1) |
13 | 5, 12 | bltr 138 |
. . . . . 6
(b0 ∩ (a0 ∪ p0)) ≤ ((a0 ∪ a1) ∪ b1) |
14 | 2, 13 | ler2an 173 |
. . . . 5
(b0 ∩ (a0 ∪ p0)) ≤ (((b0 ∩ (a0 ∪ p0)) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1)) |
15 | | leor 159 |
. . . . . . 7
b1 ≤ ((b0 ∩ (a0 ∪ p0)) ∪ b1) |
16 | 15 | mldual2i 1127 |
. . . . . 6
(((b0 ∩ (a0 ∪ p0)) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1)) = ((((b0 ∩ (a0 ∪ p0)) ∪ b1) ∩ (a0 ∪ a1)) ∪ b1) |
17 | | ancom 74 |
. . . . . . 7
(((b0 ∩ (a0 ∪ p0)) ∪ b1) ∩ (a0 ∪ a1)) = ((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) |
18 | 17 | ror 71 |
. . . . . 6
((((b0 ∩ (a0 ∪ p0)) ∪ b1) ∩ (a0 ∪ a1)) ∪ b1) = (((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ b1) |
19 | 16, 18 | tr 62 |
. . . . 5
(((b0 ∩ (a0 ∪ p0)) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1)) = (((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ b1) |
20 | 14, 19 | lbtr 139 |
. . . 4
(b0 ∩ (a0 ∪ p0)) ≤ (((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ b1) |
21 | 1 | lelor 166 |
. . . 4
(((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ b1) ≤ (((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
22 | 20, 21 | letr 137 |
. . 3
(b0 ∩ (a0 ∪ p0)) ≤ (((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
23 | | lea 160 |
. . . . . . . 8
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (a0 ∪ a1) |
24 | | dp53lem.1 |
. . . . . . . . 9
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
25 | | dp53lem.2 |
. . . . . . . . 9
c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
26 | 24, 25, 3 | dp15 1162 |
. . . . . . . 8
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |
27 | 23, 26 | ler2an 173 |
. . . . . . 7
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ ((a0 ∪ a1) ∩ ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1)))) |
28 | | lear 161 |
. . . . . . . 8
(b1 ∩ (a0 ∪ a1)) ≤ (a0 ∪ a1) |
29 | 28 | mldual2i 1127 |
. . . . . . 7
((a0 ∪ a1) ∩ ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1)))) = (((a0 ∪ a1) ∩ (c0 ∪ c1)) ∪ (b1 ∩ (a0 ∪ a1))) |
30 | 27, 29 | lbtr 139 |
. . . . . 6
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (((a0 ∪ a1) ∩ (c0 ∪ c1)) ∪ (b1 ∩ (a0 ∪ a1))) |
31 | | lea 160 |
. . . . . . 7
(b1 ∩ (a0 ∪ a1)) ≤ b1 |
32 | 31 | lelor 166 |
. . . . . 6
(((a0 ∪ a1) ∩ (c0 ∪ c1)) ∪ (b1 ∩ (a0 ∪ a1))) ≤ (((a0 ∪ a1) ∩ (c0 ∪ c1)) ∪ b1) |
33 | 30, 32 | letr 137 |
. . . . 5
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (((a0 ∪ a1) ∩ (c0 ∪ c1)) ∪ b1) |
34 | | orcom 73 |
. . . . 5
(((a0 ∪ a1) ∩ (c0 ∪ c1)) ∪ b1) = (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
35 | 33, 34 | lbtr 139 |
. . . 4
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
36 | | leid 148 |
. . . 4
(b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
37 | 35, 36 | lel2or 170 |
. . 3
(((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
38 | 22, 37 | letr 137 |
. 2
(b0 ∩ (a0 ∪ p0)) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
39 | 1, 38 | lel2or 170 |
1
(b1 ∪ (b0 ∩ (a0 ∪ p0))) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |