Proof of Theorem xdp53
Step | Hyp | Ref
| Expression |
1 | | leor 159 |
. 2
p ≤ (a0 ∪ p) |
2 | | leo 158 |
. . 3
a0 ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
3 | | xdp53.5 |
. . . . . . . 8
p = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) |
4 | | anass 76 |
. . . . . . . 8
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) = ((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a2 ∪ b2))) |
5 | 3, 4 | tr 62 |
. . . . . . 7
p = ((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a2 ∪ b2))) |
6 | | xdp53.4 |
. . . . . . . . . . 11
p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2)) |
7 | 6 | lan 77 |
. . . . . . . . . 10
((a0 ∪ b0) ∩ p0) = ((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a2 ∪ b2))) |
8 | 7 | cm 61 |
. . . . . . . . 9
((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a2 ∪ b2))) = ((a0 ∪ b0) ∩ p0) |
9 | | leao4 165 |
. . . . . . . . 9
((a0 ∪ b0) ∩ p0) ≤ (a0 ∪ p0) |
10 | 8, 9 | bltr 138 |
. . . . . . . 8
((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a2 ∪ b2))) ≤ (a0 ∪ p0) |
11 | | lea 160 |
. . . . . . . . 9
((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a2 ∪ b2))) ≤ (a0 ∪ b0) |
12 | | orcom 73 |
. . . . . . . . 9
(a0 ∪ b0) = (b0 ∪ a0) |
13 | 11, 12 | lbtr 139 |
. . . . . . . 8
((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a2 ∪ b2))) ≤ (b0 ∪ a0) |
14 | 10, 13 | ler2an 173 |
. . . . . . 7
((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a2 ∪ b2))) ≤ ((a0 ∪ p0) ∩ (b0 ∪ a0)) |
15 | 5, 14 | bltr 138 |
. . . . . 6
p ≤ ((a0 ∪ p0) ∩ (b0 ∪ a0)) |
16 | | leo 158 |
. . . . . . . 8
a0 ≤ (a0 ∪ p0) |
17 | 16 | mldual2i 1127 |
. . . . . . 7
((a0 ∪ p0) ∩ (b0 ∪ a0)) = (((a0 ∪ p0) ∩ b0) ∪ a0) |
18 | | ancom 74 |
. . . . . . . 8
((a0 ∪ p0) ∩ b0) = (b0 ∩ (a0 ∪ p0)) |
19 | 18 | ror 71 |
. . . . . . 7
(((a0 ∪ p0) ∩ b0) ∪ a0) = ((b0 ∩ (a0 ∪ p0)) ∪ a0) |
20 | 17, 19 | tr 62 |
. . . . . 6
((a0 ∪ p0) ∩ (b0 ∪ a0)) = ((b0 ∩ (a0 ∪ p0)) ∪ a0) |
21 | 15, 20 | lbtr 139 |
. . . . 5
p ≤ ((b0 ∩ (a0 ∪ p0)) ∪ a0) |
22 | 2 | lelor 166 |
. . . . 5
((b0 ∩ (a0 ∪ p0)) ∪ a0) ≤ ((b0 ∩ (a0 ∪ p0)) ∪ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))))) |
23 | 21, 22 | letr 137 |
. . . 4
p ≤ ((b0 ∩ (a0 ∪ p0)) ∪ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))))) |
24 | | lea 160 |
. . . . . . . 8
(b0 ∩ (a0 ∪ p0)) ≤ b0 |
25 | | leor 159 |
. . . . . . . . 9
(b0 ∩ (a0 ∪ p0)) ≤ (b1 ∪ (b0 ∩ (a0 ∪ p0))) |
26 | | leo 158 |
. . . . . . . . . 10
b1 ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
27 | | leo 158 |
. . . . . . . . . . . . . 14
(b0 ∩ (a0 ∪ p0)) ≤ ((b0 ∩ (a0 ∪ p0)) ∪ b1) |
28 | 6 | lor 70 |
. . . . . . . . . . . . . . . 16
(a0 ∪ p0) = (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) |
29 | 28 | lan 77 |
. . . . . . . . . . . . . . 15
(b0 ∩ (a0 ∪ p0)) = (b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) |
30 | | lear 161 |
. . . . . . . . . . . . . . . 16
(b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) ≤ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) |
31 | | lea 160 |
. . . . . . . . . . . . . . . . . 18
((a1 ∪ b1) ∩ (a2 ∪ b2)) ≤ (a1 ∪ b1) |
32 | 31 | lelor 166 |
. . . . . . . . . . . . . . . . 17
(a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) ≤ (a0 ∪ (a1 ∪ b1)) |
33 | | ax-a3 32 |
. . . . . . . . . . . . . . . . . 18
((a0 ∪ a1) ∪ b1) = (a0 ∪ (a1 ∪ b1)) |
34 | 33 | cm 61 |
. . . . . . . . . . . . . . . . 17
(a0 ∪ (a1 ∪ b1)) = ((a0 ∪ a1) ∪ b1) |
35 | 32, 34 | lbtr 139 |
. . . . . . . . . . . . . . . 16
(a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) ≤ ((a0 ∪ a1) ∪ b1) |
36 | 30, 35 | letr 137 |
. . . . . . . . . . . . . . 15
(b0 ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) ≤ ((a0 ∪ a1) ∪ b1) |
37 | 29, 36 | bltr 138 |
. . . . . . . . . . . . . 14
(b0 ∩ (a0 ∪ p0)) ≤ ((a0 ∪ a1) ∪ b1) |
38 | 27, 37 | ler2an 173 |
. . . . . . . . . . . . 13
(b0 ∩ (a0 ∪ p0)) ≤ (((b0 ∩ (a0 ∪ p0)) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1)) |
39 | | leor 159 |
. . . . . . . . . . . . . . 15
b1 ≤ ((b0 ∩ (a0 ∪ p0)) ∪ b1) |
40 | 39 | mldual2i 1127 |
. . . . . . . . . . . . . 14
(((b0 ∩ (a0 ∪ p0)) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1)) = ((((b0 ∩ (a0 ∪ p0)) ∪ b1) ∩ (a0 ∪ a1)) ∪ b1) |
41 | | ancom 74 |
. . . . . . . . . . . . . . 15
(((b0 ∩ (a0 ∪ p0)) ∪ b1) ∩ (a0 ∪ a1)) = ((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) |
42 | 41 | ror 71 |
. . . . . . . . . . . . . 14
((((b0 ∩ (a0 ∪ p0)) ∪ b1) ∩ (a0 ∪ a1)) ∪ b1) = (((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ b1) |
43 | 40, 42 | tr 62 |
. . . . . . . . . . . . 13
(((b0 ∩ (a0 ∪ p0)) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1)) = (((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ b1) |
44 | 38, 43 | lbtr 139 |
. . . . . . . . . . . 12
(b0 ∩ (a0 ∪ p0)) ≤ (((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ b1) |
45 | 26 | lelor 166 |
. . . . . . . . . . . 12
(((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ b1) ≤ (((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
46 | 44, 45 | letr 137 |
. . . . . . . . . . 11
(b0 ∩ (a0 ∪ p0)) ≤ (((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
47 | | lea 160 |
. . . . . . . . . . . . . . . 16
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (a0 ∪ a1) |
48 | | xdp53.1 |
. . . . . . . . . . . . . . . . 17
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
49 | | xdp53.2 |
. . . . . . . . . . . . . . . . 17
c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
50 | 48, 49, 6 | dp15 1162 |
. . . . . . . . . . . . . . . 16
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |
51 | 47, 50 | ler2an 173 |
. . . . . . . . . . . . . . 15
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ ((a0 ∪ a1) ∩ ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1)))) |
52 | | lear 161 |
. . . . . . . . . . . . . . . 16
(b1 ∩ (a0 ∪ a1)) ≤ (a0 ∪ a1) |
53 | 52 | mldual2i 1127 |
. . . . . . . . . . . . . . 15
((a0 ∪ a1) ∩ ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1)))) = (((a0 ∪ a1) ∩ (c0 ∪ c1)) ∪ (b1 ∩ (a0 ∪ a1))) |
54 | 51, 53 | lbtr 139 |
. . . . . . . . . . . . . 14
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (((a0 ∪ a1) ∩ (c0 ∪ c1)) ∪ (b1 ∩ (a0 ∪ a1))) |
55 | | lea 160 |
. . . . . . . . . . . . . . 15
(b1 ∩ (a0 ∪ a1)) ≤ b1 |
56 | 55 | lelor 166 |
. . . . . . . . . . . . . 14
(((a0 ∪ a1) ∩ (c0 ∪ c1)) ∪ (b1 ∩ (a0 ∪ a1))) ≤ (((a0 ∪ a1) ∩ (c0 ∪ c1)) ∪ b1) |
57 | 54, 56 | letr 137 |
. . . . . . . . . . . . 13
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (((a0 ∪ a1) ∩ (c0 ∪ c1)) ∪ b1) |
58 | | orcom 73 |
. . . . . . . . . . . . 13
(((a0 ∪ a1) ∩ (c0 ∪ c1)) ∪ b1) = (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
59 | 57, 58 | lbtr 139 |
. . . . . . . . . . . 12
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
60 | | leid 148 |
. . . . . . . . . . . 12
(b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
61 | 59, 60 | lel2or 170 |
. . . . . . . . . . 11
(((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ∪ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
62 | 46, 61 | letr 137 |
. . . . . . . . . 10
(b0 ∩ (a0 ∪ p0)) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
63 | 26, 62 | lel2or 170 |
. . . . . . . . 9
(b1 ∪ (b0 ∩ (a0 ∪ p0))) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
64 | 25, 63 | letr 137 |
. . . . . . . 8
(b0 ∩ (a0 ∪ p0)) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
65 | 24, 64 | ler2an 173 |
. . . . . . 7
(b0 ∩ (a0 ∪ p0)) ≤ (b0 ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
66 | | or32 82 |
. . . . . . . . . . 11
(((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) = (((a0 ∩ b0) ∪ (c2 ∩ (c0 ∪ c1))) ∪ b1) |
67 | | orcom 73 |
. . . . . . . . . . 11
(((a0 ∩ b0) ∪ (c2 ∩ (c0 ∪ c1))) ∪ b1) = (b1 ∪ ((a0 ∩ b0) ∪ (c2 ∩ (c0 ∪ c1)))) |
68 | | leo 158 |
. . . . . . . . . . . . . . . 16
a0 ≤ (a0 ∪ a1) |
69 | | leo 158 |
. . . . . . . . . . . . . . . 16
b0 ≤ (b0 ∪ b1) |
70 | 68, 69 | le2an 169 |
. . . . . . . . . . . . . . 15
(a0 ∩ b0) ≤ ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
71 | | xdp53.3 |
. . . . . . . . . . . . . . . 16
c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
72 | 71 | cm 61 |
. . . . . . . . . . . . . . 15
((a0 ∪ a1) ∩ (b0 ∪ b1)) = c2 |
73 | 70, 72 | lbtr 139 |
. . . . . . . . . . . . . 14
(a0 ∩ b0) ≤ c2 |
74 | | leo 158 |
. . . . . . . . . . . . . . . . 17
a0 ≤ (a0 ∪ a2) |
75 | | leo 158 |
. . . . . . . . . . . . . . . . 17
b0 ≤ (b0 ∪ b2) |
76 | 74, 75 | le2an 169 |
. . . . . . . . . . . . . . . 16
(a0 ∩ b0) ≤ ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
77 | 49 | cm 61 |
. . . . . . . . . . . . . . . 16
((a0 ∪ a2) ∩ (b0 ∪ b2)) = c1 |
78 | 76, 77 | lbtr 139 |
. . . . . . . . . . . . . . 15
(a0 ∩ b0) ≤ c1 |
79 | 78 | lerr 150 |
. . . . . . . . . . . . . 14
(a0 ∩ b0) ≤ (c0 ∪ c1) |
80 | 73, 79 | ler2an 173 |
. . . . . . . . . . . . 13
(a0 ∩ b0) ≤ (c2 ∩ (c0 ∪ c1)) |
81 | 80 | df-le2 131 |
. . . . . . . . . . . 12
((a0 ∩ b0) ∪ (c2 ∩ (c0 ∪ c1))) = (c2 ∩ (c0 ∪ c1)) |
82 | 81 | lor 70 |
. . . . . . . . . . 11
(b1 ∪ ((a0 ∩ b0) ∪ (c2 ∩ (c0 ∪ c1)))) = (b1 ∪ (c2 ∩ (c0 ∪ c1))) |
83 | 66, 67, 82 | 3tr 65 |
. . . . . . . . . 10
(((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) = (b1 ∪ (c2 ∩ (c0 ∪ c1))) |
84 | 83 | lan 77 |
. . . . . . . . 9
(b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) = (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) |
85 | 71 | ran 78 |
. . . . . . . . . . . . . 14
(c2 ∩ (c0 ∪ c1)) = (((a0 ∪ a1) ∩ (b0 ∪ b1)) ∩ (c0 ∪ c1)) |
86 | | an32 83 |
. . . . . . . . . . . . . 14
(((a0 ∪ a1) ∩ (b0 ∪ b1)) ∩ (c0 ∪ c1)) = (((a0 ∪ a1) ∩ (c0 ∪ c1)) ∩ (b0 ∪ b1)) |
87 | 85, 86 | tr 62 |
. . . . . . . . . . . . 13
(c2 ∩ (c0 ∪ c1)) = (((a0 ∪ a1) ∩ (c0 ∪ c1)) ∩ (b0 ∪ b1)) |
88 | 87 | lor 70 |
. . . . . . . . . . . 12
(b1 ∪ (c2 ∩ (c0 ∪ c1))) = (b1 ∪ (((a0 ∪ a1) ∩ (c0 ∪ c1)) ∩ (b0 ∪ b1))) |
89 | | leor 159 |
. . . . . . . . . . . . 13
b1 ≤ (b0 ∪ b1) |
90 | 89 | ml2i 1125 |
. . . . . . . . . . . 12
(b1 ∪ (((a0 ∪ a1) ∩ (c0 ∪ c1)) ∩ (b0 ∪ b1))) = ((b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) ∩ (b0 ∪ b1)) |
91 | | ancom 74 |
. . . . . . . . . . . 12
((b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) ∩ (b0 ∪ b1)) = ((b0 ∪ b1) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
92 | 88, 90, 91 | 3tr 65 |
. . . . . . . . . . 11
(b1 ∪ (c2 ∩ (c0 ∪ c1))) = ((b0 ∪ b1) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
93 | 92 | lan 77 |
. . . . . . . . . 10
(b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) = (b0 ∩ ((b0 ∪ b1) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))))) |
94 | | anass 76 |
. . . . . . . . . . 11
((b0 ∩ (b0 ∪ b1)) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) = (b0 ∩ ((b0 ∪ b1) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))))) |
95 | 94 | cm 61 |
. . . . . . . . . 10
(b0 ∩ ((b0 ∪ b1) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))))) = ((b0 ∩ (b0 ∪ b1)) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
96 | | anabs 121 |
. . . . . . . . . . 11
(b0 ∩ (b0 ∪ b1)) = b0 |
97 | 96 | ran 78 |
. . . . . . . . . 10
((b0 ∩ (b0 ∪ b1)) ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) = (b0 ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
98 | 93, 95, 97 | 3tr 65 |
. . . . . . . . 9
(b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) = (b0 ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
99 | 84, 98 | tr 62 |
. . . . . . . 8
(b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) = (b0 ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
100 | 99 | cm 61 |
. . . . . . 7
(b0 ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) = (b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) |
101 | 65, 100 | lbtr 139 |
. . . . . 6
(b0 ∩ (a0 ∪ p0)) ≤ (b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) |
102 | | orass 75 |
. . . . . . . . . 10
(((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) = ((a0 ∩ b0) ∪ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) |
103 | | orcom 73 |
. . . . . . . . . 10
((a0 ∩ b0) ∪ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) = ((b1 ∪ (c2 ∩ (c0 ∪ c1))) ∪ (a0 ∩ b0)) |
104 | 102, 103 | tr 62 |
. . . . . . . . 9
(((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) = ((b1 ∪ (c2 ∩ (c0 ∪ c1))) ∪ (a0 ∩ b0)) |
105 | 104 | lan 77 |
. . . . . . . 8
(b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) = (b0 ∩ ((b1 ∪ (c2 ∩ (c0 ∪ c1))) ∪ (a0 ∩ b0))) |
106 | | lear 161 |
. . . . . . . . 9
(a0 ∩ b0) ≤ b0 |
107 | 106 | mldual2i 1127 |
. . . . . . . 8
(b0 ∩ ((b1 ∪ (c2 ∩ (c0 ∪ c1))) ∪ (a0 ∩ b0))) = ((b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) ∪ (a0 ∩ b0)) |
108 | | orcom 73 |
. . . . . . . 8
((b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) ∪ (a0 ∩ b0)) = ((a0 ∩ b0) ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
109 | 105, 107,
108 | 3tr 65 |
. . . . . . 7
(b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) = ((a0 ∩ b0) ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
110 | | lea 160 |
. . . . . . . 8
(a0 ∩ b0) ≤ a0 |
111 | 110 | leror 152 |
. . . . . . 7
((a0 ∩ b0) ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
112 | 109, 111 | bltr 138 |
. . . . . 6
(b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
113 | 101, 112 | letr 137 |
. . . . 5
(b0 ∩ (a0 ∪ p0)) ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
114 | 113 | df-le2 131 |
. . . 4
((b0 ∩ (a0 ∪ p0)) ∪ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))))) = (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
115 | 23, 114 | lbtr 139 |
. . 3
p ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
116 | 2, 115 | lel2or 170 |
. 2
(a0 ∪ p) ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
117 | 1, 116 | letr 137 |
1
p ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |