Proof of Theorem dp53lemd
Step | Hyp | Ref
| Expression |
1 | | lea 160 |
. . 3
(b0 ∩ (a0 ∪ p0)) ≤ b0 |
2 | | leor 159 |
. . . 4
(b0 ∩ (a0 ∪ p0)) ≤ (b1 ∪ (b0 ∩ (a0 ∪ p0))) |
3 | | dp53lem.1 |
. . . . 5
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
4 | | dp53lem.2 |
. . . . 5
c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
5 | | dp53lem.3 |
. . . . 5
c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
6 | | dp53lem.4 |
. . . . 5
p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2)) |
7 | | dp53lem.5 |
. . . . 5
p = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) |
8 | 3, 4, 5, 6, 7 | dp53lema 1163 |
. . . 4
(b1 ∪ (b0 ∩ (a0 ∪ p0))) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
9 | 2, 8 | letr 137 |
. . 3
(b0 ∩ (a0 ∪ p0)) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
10 | 1, 9 | ler2an 173 |
. 2
(b0 ∩ (a0 ∪ p0)) ≤ (b0 ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
11 | 3, 4, 5, 6, 7 | dp53lemc 1165 |
. . . 4
(b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) = (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) |
12 | 3, 4, 5, 6, 7 | dp53lemb 1164 |
. . . 4
(b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) = (b0 ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
13 | 11, 12 | tr 62 |
. . 3
(b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) = (b0 ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
14 | 13 | cm 61 |
. 2
(b0 ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) = (b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) |
15 | 10, 14 | lbtr 139 |
1
(b0 ∩ (a0 ∪ p0)) ≤ (b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) |