Proof of Theorem dp53leme
Step | Hyp | Ref
| Expression |
1 | | dp53lem.1 |
. . 3
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
2 | | dp53lem.2 |
. . 3
c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
3 | | dp53lem.3 |
. . 3
c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
4 | | dp53lem.4 |
. . 3
p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2)) |
5 | | dp53lem.5 |
. . 3
p = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) |
6 | 1, 2, 3, 4, 5 | dp53lemd 1166 |
. 2
(b0 ∩ (a0 ∪ p0)) ≤ (b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) |
7 | | orass 75 |
. . . . . 6
(((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) = ((a0 ∩ b0) ∪ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) |
8 | | orcom 73 |
. . . . . 6
((a0 ∩ b0) ∪ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) = ((b1 ∪ (c2 ∩ (c0 ∪ c1))) ∪ (a0 ∩ b0)) |
9 | 7, 8 | tr 62 |
. . . . 5
(((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) = ((b1 ∪ (c2 ∩ (c0 ∪ c1))) ∪ (a0 ∩ b0)) |
10 | 9 | lan 77 |
. . . 4
(b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) = (b0 ∩ ((b1 ∪ (c2 ∩ (c0 ∪ c1))) ∪ (a0 ∩ b0))) |
11 | | lear 161 |
. . . . 5
(a0 ∩ b0) ≤ b0 |
12 | 11 | mldual2i 1127 |
. . . 4
(b0 ∩ ((b1 ∪ (c2 ∩ (c0 ∪ c1))) ∪ (a0 ∩ b0))) = ((b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) ∪ (a0 ∩ b0)) |
13 | | orcom 73 |
. . . 4
((b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) ∪ (a0 ∩ b0)) = ((a0 ∩ b0) ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
14 | 10, 12, 13 | 3tr 65 |
. . 3
(b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) = ((a0 ∩ b0) ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
15 | | lea 160 |
. . . 4
(a0 ∩ b0) ≤ a0 |
16 | 15 | leror 152 |
. . 3
((a0 ∩ b0) ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
17 | 14, 16 | bltr 138 |
. 2
(b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
18 | 6, 17 | letr 137 |
1
(b0 ∩ (a0 ∪ p0)) ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |