QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  e2ast2 GIF version

Theorem e2ast2 894
Description: Show that the E*2 derivative on p. 23 of Mayet, "Equations holding in Hilbert lattices" IJTP 2006, holds in all OMLs. (Contributed by NM, 24-Jun-2006.)
Hypotheses
Ref Expression
e2ast2.1 ab
e2ast2.2 cd
e2ast2.3 ac
Assertion
Ref Expression
e2ast2 ((ab) ∩ (cd)) ≤ ((bd) ∪ (ac) )

Proof of Theorem e2ast2
StepHypRef Expression
1 e2ast2.3 . . . 4 ac
21leror 152 . . 3 (ab) ≤ (cb)
31lecon3 157 . . . 4 ca
43leror 152 . . 3 (cd) ≤ (ad)
52, 4le2an 169 . 2 ((ab) ∩ (cd)) ≤ ((cb) ∩ (ad))
6 e2ast2.2 . . . . . . . . . . 11 cd
76lecon3 157 . . . . . . . . . 10 dc
87lecom 180 . . . . . . . . 9 d C c
98comcom 453 . . . . . . . 8 c C d
101lecom 180 . . . . . . . . . 10 a C c
1110comcom 453 . . . . . . . . 9 c C a
1211comcom2 183 . . . . . . . 8 c C a
139, 12fh4c 478 . . . . . . 7 (d ∪ (ac )) = ((da ) ∩ (dc ))
147df-le2 131 . . . . . . . 8 (dc ) = c
1514lan 77 . . . . . . 7 ((da ) ∩ (dc )) = ((da ) ∩ c )
1613, 15ax-r2 36 . . . . . 6 (d ∪ (ac )) = ((da ) ∩ c )
1716ax-r1 35 . . . . 5 ((da ) ∩ c ) = (d ∪ (ac ))
18 anor3 90 . . . . . 6 (ac ) = (ac)
1918lor 70 . . . . 5 (d ∪ (ac )) = (d ∪ (ac) )
2017, 19ax-r2 36 . . . 4 ((da ) ∩ c ) = (d ∪ (ac) )
2120lor 70 . . 3 (b ∪ ((da ) ∩ c )) = (b ∪ (d ∪ (ac) ))
22 leao4 165 . . . . . . . . 9 (ba ) ≤ (da )
2322lecom 180 . . . . . . . 8 (ba ) C (da )
2423comcom 453 . . . . . . 7 (da ) C (ba )
259, 12com2or 483 . . . . . . . 8 c C (da )
2625comcom 453 . . . . . . 7 (da ) C c
2724, 26fh4 472 . . . . . 6 ((ba ) ∪ ((da ) ∩ c )) = (((ba ) ∪ (da )) ∩ ((ba ) ∪ c ))
28 or32 82 . . . . . . . 8 (((ba ) ∪ d) ∪ a ) = (((ba ) ∪ a ) ∪ d)
29 ax-a3 32 . . . . . . . 8 (((ba ) ∪ d) ∪ a ) = ((ba ) ∪ (da ))
30 lear 161 . . . . . . . . . 10 (ba ) ≤ a
3130df-le2 131 . . . . . . . . 9 ((ba ) ∪ a ) = a
3231ax-r5 38 . . . . . . . 8 (((ba ) ∪ a ) ∪ d) = (ad)
3328, 29, 323tr2 64 . . . . . . 7 ((ba ) ∪ (da )) = (ad)
34 e2ast2.1 . . . . . . . . . . 11 ab
3534lecon3 157 . . . . . . . . . 10 ba
3635df2le2 136 . . . . . . . . 9 (ba ) = b
3736ax-r5 38 . . . . . . . 8 ((ba ) ∪ c ) = (bc )
38 ax-a2 31 . . . . . . . 8 (bc ) = (cb)
3937, 38ax-r2 36 . . . . . . 7 ((ba ) ∪ c ) = (cb)
4033, 392an 79 . . . . . 6 (((ba ) ∪ (da )) ∩ ((ba ) ∪ c )) = ((ad) ∩ (cb))
41 ancom 74 . . . . . 6 ((ad) ∩ (cb)) = ((cb) ∩ (ad))
4227, 40, 413tr 65 . . . . 5 ((ba ) ∪ ((da ) ∩ c )) = ((cb) ∩ (ad))
4342ax-r1 35 . . . 4 ((cb) ∩ (ad)) = ((ba ) ∪ ((da ) ∩ c ))
4436ax-r5 38 . . . 4 ((ba ) ∪ ((da ) ∩ c )) = (b ∪ ((da ) ∩ c ))
4543, 44ax-r2 36 . . 3 ((cb) ∩ (ad)) = (b ∪ ((da ) ∩ c ))
46 ax-a3 32 . . 3 ((bd) ∪ (ac) ) = (b ∪ (d ∪ (ac) ))
4721, 45, 463tr1 63 . 2 ((cb) ∩ (ad)) = ((bd) ∪ (ac) )
485, 47lbtr 139 1 ((ab) ∩ (cd)) ≤ ((bd) ∪ (ac) )
Colors of variables: term
Syntax hints:  wle 2   wn 4  wo 6  wa 7
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-le1 130  df-le2 131  df-c1 132  df-c2 133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator