Proof of Theorem e2ast2
Step | Hyp | Ref
| Expression |
1 | | e2ast2.3 |
. . . 4
a ≤ c⊥ |
2 | 1 | leror 152 |
. . 3
(a ∪ b) ≤ (c⊥ ∪ b) |
3 | 1 | lecon3 157 |
. . . 4
c ≤ a⊥ |
4 | 3 | leror 152 |
. . 3
(c ∪ d) ≤ (a⊥ ∪ d) |
5 | 2, 4 | le2an 169 |
. 2
((a ∪ b) ∩ (c
∪ d)) ≤ ((c⊥ ∪ b) ∩ (a⊥ ∪ d)) |
6 | | e2ast2.2 |
. . . . . . . . . . 11
c ≤ d⊥ |
7 | 6 | lecon3 157 |
. . . . . . . . . 10
d ≤ c⊥ |
8 | 7 | lecom 180 |
. . . . . . . . 9
d C c⊥ |
9 | 8 | comcom 453 |
. . . . . . . 8
c⊥ C
d |
10 | 1 | lecom 180 |
. . . . . . . . . 10
a C c⊥ |
11 | 10 | comcom 453 |
. . . . . . . . 9
c⊥ C
a |
12 | 11 | comcom2 183 |
. . . . . . . 8
c⊥ C
a⊥ |
13 | 9, 12 | fh4c 478 |
. . . . . . 7
(d ∪ (a⊥ ∩ c⊥ )) = ((d ∪ a⊥ ) ∩ (d ∪ c⊥ )) |
14 | 7 | df-le2 131 |
. . . . . . . 8
(d ∪ c⊥ ) = c⊥ |
15 | 14 | lan 77 |
. . . . . . 7
((d ∪ a⊥ ) ∩ (d ∪ c⊥ )) = ((d ∪ a⊥ ) ∩ c⊥ ) |
16 | 13, 15 | ax-r2 36 |
. . . . . 6
(d ∪ (a⊥ ∩ c⊥ )) = ((d ∪ a⊥ ) ∩ c⊥ ) |
17 | 16 | ax-r1 35 |
. . . . 5
((d ∪ a⊥ ) ∩ c⊥ ) = (d ∪ (a⊥ ∩ c⊥ )) |
18 | | anor3 90 |
. . . . . 6
(a⊥ ∩ c⊥ ) = (a ∪ c)⊥ |
19 | 18 | lor 70 |
. . . . 5
(d ∪ (a⊥ ∩ c⊥ )) = (d ∪ (a ∪
c)⊥ ) |
20 | 17, 19 | ax-r2 36 |
. . . 4
((d ∪ a⊥ ) ∩ c⊥ ) = (d ∪ (a ∪
c)⊥ ) |
21 | 20 | lor 70 |
. . 3
(b ∪ ((d ∪ a⊥ ) ∩ c⊥ )) = (b ∪ (d ∪
(a ∪ c)⊥ )) |
22 | | leao4 165 |
. . . . . . . . 9
(b ∩ a⊥ ) ≤ (d ∪ a⊥ ) |
23 | 22 | lecom 180 |
. . . . . . . 8
(b ∩ a⊥ ) C (d ∪ a⊥ ) |
24 | 23 | comcom 453 |
. . . . . . 7
(d ∪ a⊥ ) C (b ∩ a⊥ ) |
25 | 9, 12 | com2or 483 |
. . . . . . . 8
c⊥ C
(d ∪ a⊥ ) |
26 | 25 | comcom 453 |
. . . . . . 7
(d ∪ a⊥ ) C c⊥ |
27 | 24, 26 | fh4 472 |
. . . . . 6
((b ∩ a⊥ ) ∪ ((d ∪ a⊥ ) ∩ c⊥ )) = (((b ∩ a⊥ ) ∪ (d ∪ a⊥ )) ∩ ((b ∩ a⊥ ) ∪ c⊥ )) |
28 | | or32 82 |
. . . . . . . 8
(((b ∩ a⊥ ) ∪ d) ∪ a⊥ ) = (((b ∩ a⊥ ) ∪ a⊥ ) ∪ d) |
29 | | ax-a3 32 |
. . . . . . . 8
(((b ∩ a⊥ ) ∪ d) ∪ a⊥ ) = ((b ∩ a⊥ ) ∪ (d ∪ a⊥ )) |
30 | | lear 161 |
. . . . . . . . . 10
(b ∩ a⊥ ) ≤ a⊥ |
31 | 30 | df-le2 131 |
. . . . . . . . 9
((b ∩ a⊥ ) ∪ a⊥ ) = a⊥ |
32 | 31 | ax-r5 38 |
. . . . . . . 8
(((b ∩ a⊥ ) ∪ a⊥ ) ∪ d) = (a⊥ ∪ d) |
33 | 28, 29, 32 | 3tr2 64 |
. . . . . . 7
((b ∩ a⊥ ) ∪ (d ∪ a⊥ )) = (a⊥ ∪ d) |
34 | | e2ast2.1 |
. . . . . . . . . . 11
a ≤ b⊥ |
35 | 34 | lecon3 157 |
. . . . . . . . . 10
b ≤ a⊥ |
36 | 35 | df2le2 136 |
. . . . . . . . 9
(b ∩ a⊥ ) = b |
37 | 36 | ax-r5 38 |
. . . . . . . 8
((b ∩ a⊥ ) ∪ c⊥ ) = (b ∪ c⊥ ) |
38 | | ax-a2 31 |
. . . . . . . 8
(b ∪ c⊥ ) = (c⊥ ∪ b) |
39 | 37, 38 | ax-r2 36 |
. . . . . . 7
((b ∩ a⊥ ) ∪ c⊥ ) = (c⊥ ∪ b) |
40 | 33, 39 | 2an 79 |
. . . . . 6
(((b ∩ a⊥ ) ∪ (d ∪ a⊥ )) ∩ ((b ∩ a⊥ ) ∪ c⊥ )) = ((a⊥ ∪ d) ∩ (c⊥ ∪ b)) |
41 | | ancom 74 |
. . . . . 6
((a⊥ ∪ d) ∩ (c⊥ ∪ b)) = ((c⊥ ∪ b) ∩ (a⊥ ∪ d)) |
42 | 27, 40, 41 | 3tr 65 |
. . . . 5
((b ∩ a⊥ ) ∪ ((d ∪ a⊥ ) ∩ c⊥ )) = ((c⊥ ∪ b) ∩ (a⊥ ∪ d)) |
43 | 42 | ax-r1 35 |
. . . 4
((c⊥ ∪ b) ∩ (a⊥ ∪ d)) = ((b ∩
a⊥ ) ∪ ((d ∪ a⊥ ) ∩ c⊥ )) |
44 | 36 | ax-r5 38 |
. . . 4
((b ∩ a⊥ ) ∪ ((d ∪ a⊥ ) ∩ c⊥ )) = (b ∪ ((d
∪ a⊥ ) ∩ c⊥ )) |
45 | 43, 44 | ax-r2 36 |
. . 3
((c⊥ ∪ b) ∩ (a⊥ ∪ d)) = (b ∪
((d ∪ a⊥ ) ∩ c⊥ )) |
46 | | ax-a3 32 |
. . 3
((b ∪ d) ∪ (a
∪ c)⊥ ) = (b ∪ (d ∪
(a ∪ c)⊥ )) |
47 | 21, 45, 46 | 3tr1 63 |
. 2
((c⊥ ∪ b) ∩ (a⊥ ∪ d)) = ((b ∪
d) ∪ (a ∪ c)⊥ ) |
48 | 5, 47 | lbtr 139 |
1
((a ∪ b) ∩ (c
∪ d)) ≤ ((b ∪ d) ∪
(a ∪ c)⊥ ) |