Proof of Theorem fh4
Step | Hyp | Ref
| Expression |
1 | | fh.1 |
. . . . 5
a C b |
2 | 1 | comcom4 455 |
. . . 4
a⊥ C
b⊥ |
3 | | fh.2 |
. . . . 5
a C c |
4 | 3 | comcom4 455 |
. . . 4
a⊥ C
c⊥ |
5 | 2, 4 | fh2 470 |
. . 3
(b⊥ ∩ (a⊥ ∪ c⊥ )) = ((b⊥ ∩ a⊥ ) ∪ (b⊥ ∩ c⊥ )) |
6 | | anor2 89 |
. . . 4
(b⊥ ∩ (a⊥ ∪ c⊥ )) = (b ∪ (a⊥ ∪ c⊥ )⊥
)⊥ |
7 | | df-a 40 |
. . . . . . 7
(a ∩ c) = (a⊥ ∪ c⊥
)⊥ |
8 | 7 | ax-r1 35 |
. . . . . 6
(a⊥ ∪ c⊥ )⊥ = (a ∩ c) |
9 | 8 | lor 70 |
. . . . 5
(b ∪ (a⊥ ∪ c⊥ )⊥ ) =
(b ∪ (a ∩ c)) |
10 | 9 | ax-r4 37 |
. . . 4
(b ∪ (a⊥ ∪ c⊥ )⊥
)⊥ = (b ∪ (a ∩ c))⊥ |
11 | 6, 10 | ax-r2 36 |
. . 3
(b⊥ ∩ (a⊥ ∪ c⊥ )) = (b ∪ (a ∩
c))⊥ |
12 | | oran 87 |
. . . 4
((b⊥ ∩ a⊥ ) ∪ (b⊥ ∩ c⊥ )) = ((b⊥ ∩ a⊥ )⊥ ∩
(b⊥ ∩ c⊥ )⊥
)⊥ |
13 | | oran 87 |
. . . . . . 7
(b ∪ a) = (b⊥ ∩ a⊥
)⊥ |
14 | | oran 87 |
. . . . . . 7
(b ∪ c) = (b⊥ ∩ c⊥
)⊥ |
15 | 13, 14 | 2an 79 |
. . . . . 6
((b ∪ a) ∩ (b
∪ c)) = ((b⊥ ∩ a⊥ )⊥ ∩
(b⊥ ∩ c⊥ )⊥
) |
16 | 15 | ax-r1 35 |
. . . . 5
((b⊥ ∩ a⊥ )⊥ ∩
(b⊥ ∩ c⊥ )⊥ ) =
((b ∪ a) ∩ (b
∪ c)) |
17 | 16 | ax-r4 37 |
. . . 4
((b⊥ ∩ a⊥ )⊥ ∩
(b⊥ ∩ c⊥ )⊥
)⊥ = ((b ∪ a) ∩ (b
∪ c))⊥ |
18 | 12, 17 | ax-r2 36 |
. . 3
((b⊥ ∩ a⊥ ) ∪ (b⊥ ∩ c⊥ )) = ((b ∪ a) ∩
(b ∪ c))⊥ |
19 | 5, 11, 18 | 3tr2 64 |
. 2
(b ∪ (a ∩ c))⊥ = ((b ∪ a) ∩
(b ∪ c))⊥ |
20 | 19 | con1 66 |
1
(b ∪ (a ∩ c)) =
((b ∪ a) ∩ (b
∪ c)) |