| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > gomaex3lem4 | GIF version | ||
| Description: Lemma for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
| Ref | Expression |
|---|---|
| gomaex3lem4.9 | p = ((a ∪ b) →1 (d ∪ e)⊥ )⊥ |
| Ref | Expression |
|---|---|
| gomaex3lem4 | ((a ∪ b) ∩ (d ∪ e)⊥ ) ≤ p⊥ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leor 159 | . 2 ((a ∪ b) ∩ (d ∪ e)⊥ ) ≤ ((a ∪ b)⊥ ∪ ((a ∪ b) ∩ (d ∪ e)⊥ )) | |
| 2 | ax-a1 30 | . . 3 ((a ∪ b) →1 (d ∪ e)⊥ ) = ((a ∪ b) →1 (d ∪ e)⊥ )⊥ ⊥ | |
| 3 | df-i1 44 | . . . 4 ((a ∪ b) →1 (d ∪ e)⊥ ) = ((a ∪ b)⊥ ∪ ((a ∪ b) ∩ (d ∪ e)⊥ )) | |
| 4 | 3 | ax-r1 35 | . . 3 ((a ∪ b)⊥ ∪ ((a ∪ b) ∩ (d ∪ e)⊥ )) = ((a ∪ b) →1 (d ∪ e)⊥ ) |
| 5 | gomaex3lem4.9 | . . . 4 p = ((a ∪ b) →1 (d ∪ e)⊥ )⊥ | |
| 6 | 5 | ax-r4 37 | . . 3 p⊥ = ((a ∪ b) →1 (d ∪ e)⊥ )⊥ ⊥ |
| 7 | 2, 4, 6 | 3tr1 63 | . 2 ((a ∪ b)⊥ ∪ ((a ∪ b) ∩ (d ∪ e)⊥ )) = p⊥ |
| 8 | 1, 7 | lbtr 139 | 1 ((a ∪ b) ∩ (d ∪ e)⊥ ) ≤ p⊥ |
| Colors of variables: term |
| Syntax hints: = wb 1 ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-i1 44 df-le1 130 df-le2 131 |
| This theorem is referenced by: gomaex3lem9 922 |
| Copyright terms: Public domain | W3C validator |