Proof of Theorem gomaex3lem9
Step | Hyp | Ref
| Expression |
1 | | ancom 74 |
. . 3
(((a ∪ b) ∩ (d
∪ e)⊥ ) ∩
(r ∪ (p⊥ →1 q))) = ((r ∪
(p⊥ →1
q)) ∩ ((a ∪ b) ∩
(d ∪ e)⊥ )) |
2 | | gomaex3lem5.9 |
. . . . . . 7
p = ((a ∪ b)
→1 (d ∪ e)⊥
)⊥ |
3 | 2 | gomaex3lem4 917 |
. . . . . 6
((a ∪ b) ∩ (d
∪ e)⊥ ) ≤ p⊥ |
4 | 3 | df2le2 136 |
. . . . 5
(((a ∪ b) ∩ (d
∪ e)⊥ ) ∩ p⊥ ) = ((a ∪ b) ∩
(d ∪ e)⊥ ) |
5 | 4 | ax-r1 35 |
. . . 4
((a ∪ b) ∩ (d
∪ e)⊥ ) = (((a ∪ b) ∩
(d ∪ e)⊥ ) ∩ p⊥ ) |
6 | 5 | lan 77 |
. . 3
((r ∪ (p⊥ →1 q)) ∩ ((a
∪ b) ∩ (d ∪ e)⊥ )) = ((r ∪ (p⊥ →1 q)) ∩ (((a
∪ b) ∩ (d ∪ e)⊥ ) ∩ p⊥ )) |
7 | | an12 81 |
. . 3
((r ∪ (p⊥ →1 q)) ∩ (((a
∪ b) ∩ (d ∪ e)⊥ ) ∩ p⊥ )) = (((a ∪ b) ∩
(d ∪ e)⊥ ) ∩ ((r ∪ (p⊥ →1 q)) ∩ p⊥ )) |
8 | 1, 6, 7 | 3tr 65 |
. 2
(((a ∪ b) ∩ (d
∪ e)⊥ ) ∩
(r ∪ (p⊥ →1 q))) = (((a
∪ b) ∩ (d ∪ e)⊥ ) ∩ ((r ∪ (p⊥ →1 q)) ∩ p⊥ )) |
9 | | gomaex3lem5.1 |
. . 3
a ≤ b⊥ |
10 | | gomaex3lem5.2 |
. . 3
b ≤ c⊥ |
11 | | gomaex3lem5.3 |
. . 3
c ≤ d⊥ |
12 | | gomaex3lem5.5 |
. . 3
e ≤ f⊥ |
13 | | gomaex3lem5.6 |
. . 3
f ≤ a⊥ |
14 | | gomaex3lem5.8 |
. . 3
(((i →2 g) ∩ (g
→2 y)) ∩ (((y →2 w) ∩ (w
→2 n)) ∩ ((n →2 k) ∩ (k
→2 i)))) ≤ (g →2 i) |
15 | | gomaex3lem5.10 |
. . 3
q = ((e ∪ f)
→1 (b ∪ c)⊥
)⊥ |
16 | | gomaex3lem5.11 |
. . 3
r = ((p⊥ →1 q)⊥ ∩ (c ∪ d)) |
17 | | gomaex3lem5.12 |
. . 3
g = a |
18 | | gomaex3lem5.13 |
. . 3
h = b |
19 | | gomaex3lem5.14 |
. . 3
i = c |
20 | | gomaex3lem5.15 |
. . 3
j = (c ∪ d)⊥ |
21 | | gomaex3lem5.16 |
. . 3
k = r |
22 | | gomaex3lem5.17 |
. . 3
m = (p⊥ →1 q) |
23 | | gomaex3lem5.18 |
. . 3
n = (p⊥ →1 q)⊥ |
24 | | gomaex3lem5.19 |
. . 3
u = (p⊥ ∩ q) |
25 | | gomaex3lem5.20 |
. . 3
w = q⊥ |
26 | | gomaex3lem5.21 |
. . 3
x = q |
27 | | gomaex3lem5.22 |
. . 3
y = (e ∪ f)⊥ |
28 | | gomaex3lem5.23 |
. . 3
z = f |
29 | 9, 10, 11, 12, 13, 14, 2, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | gomaex3lem8 921 |
. 2
(((a ∪ b) ∩ (d
∪ e)⊥ ) ∩
((r ∪ (p⊥ →1 q)) ∩ p⊥ )) ≤ (b ∪ c) |
30 | 8, 29 | bltr 138 |
1
(((a ∪ b) ∩ (d
∪ e)⊥ ) ∩
(r ∪ (p⊥ →1 q))) ≤ (b
∪ c) |