Proof of Theorem gomaex3lem3
Step | Hyp | Ref
| Expression |
1 | | anor1 88 |
. . . . 5
(p⊥ ∩ (p⊥ ∩ q)⊥ ) = (p⊥ ⊥ ∪
(p⊥ ∩ q))⊥ |
2 | 1 | ax-r1 35 |
. . . 4
(p⊥
⊥ ∪ (p⊥ ∩ q))⊥ = (p⊥ ∩ (p⊥ ∩ q)⊥ ) |
3 | | df-i1 44 |
. . . . 5
(p⊥ →1
q) = (p⊥ ⊥ ∪
(p⊥ ∩ q)) |
4 | 3 | ax-r4 37 |
. . . 4
(p⊥ →1
q)⊥ = (p⊥ ⊥ ∪
(p⊥ ∩ q))⊥ |
5 | | id 59 |
. . . 4
(p⊥ ∩ (p⊥ ∩ q)⊥ ) = (p⊥ ∩ (p⊥ ∩ q)⊥ ) |
6 | 2, 4, 5 | 3tr1 63 |
. . 3
(p⊥ →1
q)⊥ = (p⊥ ∩ (p⊥ ∩ q)⊥ ) |
7 | 6 | ax-r5 38 |
. 2
((p⊥ →1
q)⊥ ∪ (p⊥ ∩ q)) = ((p⊥ ∩ (p⊥ ∩ q)⊥ ) ∪ (p⊥ ∩ q)) |
8 | | coman1 185 |
. . 3
(p⊥ ∩ q) C p⊥ |
9 | | comid 187 |
. . . 4
(p⊥ ∩ q) C (p⊥ ∩ q) |
10 | 9 | comcom2 183 |
. . 3
(p⊥ ∩ q) C (p⊥ ∩ q)⊥ |
11 | 8, 10 | fh3r 475 |
. 2
((p⊥ ∩
(p⊥ ∩ q)⊥ ) ∪ (p⊥ ∩ q)) = ((p⊥ ∪ (p⊥ ∩ q)) ∩ ((p⊥ ∩ q)⊥ ∪ (p⊥ ∩ q))) |
12 | | orabs 120 |
. . . 4
(p⊥ ∪ (p⊥ ∩ q)) = p⊥ |
13 | | ax-a2 31 |
. . . . 5
((p⊥ ∩ q)⊥ ∪ (p⊥ ∩ q)) = ((p⊥ ∩ q) ∪ (p⊥ ∩ q)⊥ ) |
14 | | df-t 41 |
. . . . . 6
1 = ((p⊥ ∩
q) ∪ (p⊥ ∩ q)⊥ ) |
15 | 14 | ax-r1 35 |
. . . . 5
((p⊥ ∩ q) ∪ (p⊥ ∩ q)⊥ ) = 1 |
16 | 13, 15 | ax-r2 36 |
. . . 4
((p⊥ ∩ q)⊥ ∪ (p⊥ ∩ q)) = 1 |
17 | 12, 16 | 2an 79 |
. . 3
((p⊥ ∪
(p⊥ ∩ q)) ∩ ((p⊥ ∩ q)⊥ ∪ (p⊥ ∩ q))) = (p⊥ ∩ 1) |
18 | | an1 106 |
. . 3
(p⊥ ∩ 1) =
p⊥ |
19 | 17, 18 | ax-r2 36 |
. 2
((p⊥ ∪
(p⊥ ∩ q)) ∩ ((p⊥ ∩ q)⊥ ∪ (p⊥ ∩ q))) = p⊥ |
20 | 7, 11, 19 | 3tr 65 |
1
((p⊥ →1
q)⊥ ∪ (p⊥ ∩ q)) = p⊥ |