QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  i1i2con2 GIF version

Theorem i1i2con2 269
Description: Correspondence between Sasaki and Dishkant conditionals. (Contributed by NM, 28-Feb-1999.)
Assertion
Ref Expression
i1i2con2 (a1 b) = (b2 a)

Proof of Theorem i1i2con2
StepHypRef Expression
1 i1i2 266 . 2 (a1 b) = (b2 a )
2 ax-a1 30 . . . 4 a = a
32ax-r1 35 . . 3 a = a
43ud2lem0a 258 . 2 (b2 a ) = (b2 a)
51, 4ax-r2 36 1 (a1 b) = (b2 a)
Colors of variables: term
Syntax hints:   = wb 1   wn 4  1 wi1 12  2 wi2 13
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-i1 44  df-i2 45
This theorem is referenced by:  2oai1u  822  1oath1i1u  828
  Copyright terms: Public domain W3C validator