Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > i1i2con2 | GIF version |
Description: Correspondence between Sasaki and Dishkant conditionals. (Contributed by NM, 28-Feb-1999.) |
Ref | Expression |
---|---|
i1i2con2 | (a⊥ →1 b) = (b⊥ →2 a) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | i1i2 266 | . 2 (a⊥ →1 b) = (b⊥ →2 a⊥ ⊥ ) | |
2 | ax-a1 30 | . . . 4 a = a⊥ ⊥ | |
3 | 2 | ax-r1 35 | . . 3 a⊥ ⊥ = a |
4 | 3 | ud2lem0a 258 | . 2 (b⊥ →2 a⊥ ⊥ ) = (b⊥ →2 a) |
5 | 1, 4 | ax-r2 36 | 1 (a⊥ →1 b) = (b⊥ →2 a) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 →1 wi1 12 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-i1 44 df-i2 45 |
This theorem is referenced by: 2oai1u 822 1oath1i1u 828 |
Copyright terms: Public domain | W3C validator |