Proof of Theorem i3i4
Step | Hyp | Ref
| Expression |
1 | | ax-a2 31 |
. . . 4
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) |
2 | | ancom 74 |
. . . . 5
(a⊥ ∩ b⊥ ) = (b⊥ ∩ a⊥ ) |
3 | | ancom 74 |
. . . . . 6
(a⊥ ∩ b) = (b ∩
a⊥ ) |
4 | | ax-a1 30 |
. . . . . . 7
b = b⊥
⊥ |
5 | 4 | ran 78 |
. . . . . 6
(b ∩ a⊥ ) = (b⊥ ⊥ ∩
a⊥ ) |
6 | 3, 5 | ax-r2 36 |
. . . . 5
(a⊥ ∩ b) = (b⊥ ⊥ ∩
a⊥ ) |
7 | 2, 6 | 2or 72 |
. . . 4
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) = ((b⊥ ∩ a⊥ ) ∪ (b⊥ ⊥ ∩
a⊥ )) |
8 | 1, 7 | ax-r2 36 |
. . 3
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) = ((b⊥ ∩ a⊥ ) ∪ (b⊥ ⊥ ∩
a⊥ )) |
9 | | ancom 74 |
. . . 4
(a ∩ (a⊥ ∪ b)) = ((a⊥ ∪ b) ∩ a) |
10 | | ax-a2 31 |
. . . . . 6
(a⊥ ∪ b) = (b ∪
a⊥ ) |
11 | 4 | ax-r5 38 |
. . . . . 6
(b ∪ a⊥ ) = (b⊥ ⊥ ∪
a⊥ ) |
12 | 10, 11 | ax-r2 36 |
. . . . 5
(a⊥ ∪ b) = (b⊥ ⊥ ∪
a⊥ ) |
13 | | ax-a1 30 |
. . . . 5
a = a⊥
⊥ |
14 | 12, 13 | 2an 79 |
. . . 4
((a⊥ ∪ b) ∩ a) =
((b⊥ ⊥
∪ a⊥ ) ∩ a⊥ ⊥
) |
15 | 9, 14 | ax-r2 36 |
. . 3
(a ∩ (a⊥ ∪ b)) = ((b⊥ ⊥ ∪
a⊥ ) ∩ a⊥ ⊥
) |
16 | 8, 15 | 2or 72 |
. 2
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) = (((b⊥ ∩ a⊥ ) ∪ (b⊥ ⊥ ∩
a⊥ )) ∪ ((b⊥ ⊥ ∪
a⊥ ) ∩ a⊥ ⊥
)) |
17 | | df-i3 46 |
. 2
(a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) |
18 | | df-i4 47 |
. 2
(b⊥ →4
a⊥ ) = (((b⊥ ∩ a⊥ ) ∪ (b⊥ ⊥ ∩
a⊥ )) ∪ ((b⊥ ⊥ ∪
a⊥ ) ∩ a⊥ ⊥
)) |
19 | 16, 17, 18 | 3tr1 63 |
1
(a →3 b) = (b⊥ →4 a⊥ ) |