Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > ud2lem0a | GIF version |
Description: Introduce →2 to the left. (Contributed by NM, 23-Nov-1997.) |
Ref | Expression |
---|---|
ud2lem0a.1 | a = b |
Ref | Expression |
---|---|
ud2lem0a | (c →2 a) = (c →2 b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ud2lem0a.1 | . . 3 a = b | |
2 | 1 | ax-r4 37 | . . . 4 a⊥ = b⊥ |
3 | 2 | lan 77 | . . 3 (c⊥ ∩ a⊥ ) = (c⊥ ∩ b⊥ ) |
4 | 1, 3 | 2or 72 | . 2 (a ∪ (c⊥ ∩ a⊥ )) = (b ∪ (c⊥ ∩ b⊥ )) |
5 | df-i2 45 | . 2 (c →2 a) = (a ∪ (c⊥ ∩ a⊥ )) | |
6 | df-i2 45 | . 2 (c →2 b) = (b ∪ (c⊥ ∩ b⊥ )) | |
7 | 4, 5, 6 | 3tr1 63 | 1 (c →2 a) = (c →2 b) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →2 wi2 13 |
This theorem was proved from axioms: ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-i2 45 |
This theorem is referenced by: i2i1 267 i1i2con2 269 nom41 326 ud2 596 3vth6 809 2oath1i1 827 1oath1i1u 828 |
Copyright terms: Public domain | W3C validator |