Proof of Theorem oa3-2lemb
Step | Hyp | Ref
| Expression |
1 | | ax-a3 32 |
. . . . 5
(((a ∩ b) ∪ ((a
→1 c) ∩ (b →1 c))) ∪ (((a
∩ c) ∪ ((a →1 c) ∩ (c
→1 c))) ∩ ((b ∩ c) ∪
((b →1 c) ∩ (c
→1 c))))) = ((a ∩ b) ∪
(((a →1 c) ∩ (b
→1 c)) ∪ (((a ∩ c) ∪
((a →1 c) ∩ (c
→1 c))) ∩ ((b ∩ c) ∪
((b →1 c) ∩ (c
→1 c)))))) |
2 | | i1id 275 |
. . . . . . . . . . . . 13
(c →1 c) = 1 |
3 | 2 | lan 77 |
. . . . . . . . . . . 12
((a →1 c) ∩ (c
→1 c)) = ((a →1 c) ∩ 1) |
4 | | an1 106 |
. . . . . . . . . . . 12
((a →1 c) ∩ 1) = (a
→1 c) |
5 | 3, 4 | ax-r2 36 |
. . . . . . . . . . 11
((a →1 c) ∩ (c
→1 c)) = (a →1 c) |
6 | 5 | lor 70 |
. . . . . . . . . 10
((a ∩ c) ∪ ((a
→1 c) ∩ (c →1 c))) = ((a ∩
c) ∪ (a →1 c)) |
7 | | or12 80 |
. . . . . . . . . . . 12
((a ∩ c) ∪ (a⊥ ∪ (a ∩ c))) =
(a⊥ ∪ ((a ∩ c) ∪
(a ∩ c))) |
8 | | oridm 110 |
. . . . . . . . . . . . 13
((a ∩ c) ∪ (a
∩ c)) = (a ∩ c) |
9 | 8 | lor 70 |
. . . . . . . . . . . 12
(a⊥ ∪
((a ∩ c) ∪ (a
∩ c))) = (a⊥ ∪ (a ∩ c)) |
10 | 7, 9 | ax-r2 36 |
. . . . . . . . . . 11
((a ∩ c) ∪ (a⊥ ∪ (a ∩ c))) =
(a⊥ ∪ (a ∩ c)) |
11 | | df-i1 44 |
. . . . . . . . . . . 12
(a →1 c) = (a⊥ ∪ (a ∩ c)) |
12 | 11 | lor 70 |
. . . . . . . . . . 11
((a ∩ c) ∪ (a
→1 c)) = ((a ∩ c) ∪
(a⊥ ∪ (a ∩ c))) |
13 | 10, 12, 11 | 3tr1 63 |
. . . . . . . . . 10
((a ∩ c) ∪ (a
→1 c)) = (a →1 c) |
14 | 6, 13 | ax-r2 36 |
. . . . . . . . 9
((a ∩ c) ∪ ((a
→1 c) ∩ (c →1 c))) = (a
→1 c) |
15 | 2 | lan 77 |
. . . . . . . . . . . 12
((b →1 c) ∩ (c
→1 c)) = ((b →1 c) ∩ 1) |
16 | | an1 106 |
. . . . . . . . . . . 12
((b →1 c) ∩ 1) = (b
→1 c) |
17 | 15, 16 | ax-r2 36 |
. . . . . . . . . . 11
((b →1 c) ∩ (c
→1 c)) = (b →1 c) |
18 | 17 | lor 70 |
. . . . . . . . . 10
((b ∩ c) ∪ ((b
→1 c) ∩ (c →1 c))) = ((b ∩
c) ∪ (b →1 c)) |
19 | | or12 80 |
. . . . . . . . . . . 12
((b ∩ c) ∪ (b⊥ ∪ (b ∩ c))) =
(b⊥ ∪ ((b ∩ c) ∪
(b ∩ c))) |
20 | | oridm 110 |
. . . . . . . . . . . . 13
((b ∩ c) ∪ (b
∩ c)) = (b ∩ c) |
21 | 20 | lor 70 |
. . . . . . . . . . . 12
(b⊥ ∪
((b ∩ c) ∪ (b
∩ c))) = (b⊥ ∪ (b ∩ c)) |
22 | 19, 21 | ax-r2 36 |
. . . . . . . . . . 11
((b ∩ c) ∪ (b⊥ ∪ (b ∩ c))) =
(b⊥ ∪ (b ∩ c)) |
23 | | df-i1 44 |
. . . . . . . . . . . 12
(b →1 c) = (b⊥ ∪ (b ∩ c)) |
24 | 23 | lor 70 |
. . . . . . . . . . 11
((b ∩ c) ∪ (b
→1 c)) = ((b ∩ c) ∪
(b⊥ ∪ (b ∩ c))) |
25 | 22, 24, 23 | 3tr1 63 |
. . . . . . . . . 10
((b ∩ c) ∪ (b
→1 c)) = (b →1 c) |
26 | 18, 25 | ax-r2 36 |
. . . . . . . . 9
((b ∩ c) ∪ ((b
→1 c) ∩ (c →1 c))) = (b
→1 c) |
27 | 14, 26 | 2an 79 |
. . . . . . . 8
(((a ∩ c) ∪ ((a
→1 c) ∩ (c →1 c))) ∩ ((b
∩ c) ∪ ((b →1 c) ∩ (c
→1 c)))) = ((a →1 c) ∩ (b
→1 c)) |
28 | 27 | lor 70 |
. . . . . . 7
(((a →1 c) ∩ (b
→1 c)) ∪ (((a ∩ c) ∪
((a →1 c) ∩ (c
→1 c))) ∩ ((b ∩ c) ∪
((b →1 c) ∩ (c
→1 c))))) = (((a →1 c) ∩ (b
→1 c)) ∪ ((a →1 c) ∩ (b
→1 c))) |
29 | | oridm 110 |
. . . . . . 7
(((a →1 c) ∩ (b
→1 c)) ∪ ((a →1 c) ∩ (b
→1 c))) = ((a →1 c) ∩ (b
→1 c)) |
30 | 28, 29 | ax-r2 36 |
. . . . . 6
(((a →1 c) ∩ (b
→1 c)) ∪ (((a ∩ c) ∪
((a →1 c) ∩ (c
→1 c))) ∩ ((b ∩ c) ∪
((b →1 c) ∩ (c
→1 c))))) = ((a →1 c) ∩ (b
→1 c)) |
31 | 30 | lor 70 |
. . . . 5
((a ∩ b) ∪ (((a
→1 c) ∩ (b →1 c)) ∪ (((a
∩ c) ∪ ((a →1 c) ∩ (c
→1 c))) ∩ ((b ∩ c) ∪
((b →1 c) ∩ (c
→1 c)))))) = ((a ∩ b) ∪
((a →1 c) ∩ (b
→1 c))) |
32 | 1, 31 | ax-r2 36 |
. . . 4
(((a ∩ b) ∪ ((a
→1 c) ∩ (b →1 c))) ∪ (((a
∩ c) ∪ ((a →1 c) ∩ (c
→1 c))) ∩ ((b ∩ c) ∪
((b →1 c) ∩ (c
→1 c))))) = ((a ∩ b) ∪
((a →1 c) ∩ (b
→1 c))) |
33 | 32 | lan 77 |
. . 3
(b ∩ (((a ∩ b) ∪
((a →1 c) ∩ (b
→1 c))) ∪ (((a ∩ c) ∪
((a →1 c) ∩ (c
→1 c))) ∩ ((b ∩ c) ∪
((b →1 c) ∩ (c
→1 c)))))) = (b ∩ ((a
∩ b) ∪ ((a →1 c) ∩ (b
→1 c)))) |
34 | 33 | lor 70 |
. 2
(a ∪ (b ∩ (((a
∩ b) ∪ ((a →1 c) ∩ (b
→1 c))) ∪ (((a ∩ c) ∪
((a →1 c) ∩ (c
→1 c))) ∩ ((b ∩ c) ∪
((b →1 c) ∩ (c
→1 c))))))) = (a ∪ (b ∩
((a ∩ b) ∪ ((a
→1 c) ∩ (b →1 c))))) |
35 | 34 | lan 77 |
1
((a →1 c) ∩ (a
∪ (b ∩ (((a ∩ b) ∪
((a →1 c) ∩ (b
→1 c))) ∪ (((a ∩ c) ∪
((a →1 c) ∩ (c
→1 c))) ∩ ((b ∩ c) ∪
((b →1 c) ∩ (c
→1 c)))))))) = ((a →1 c) ∩ (a
∪ (b ∩ ((a ∩ b) ∪
((a →1 c) ∩ (b
→1 c)))))) |