QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  i3aa GIF version

Theorem i3aa 521
Description: Add antecedent. (Contributed by NM, 7-Nov-1997.)
Hypothesis
Ref Expression
i3aa.1 a = 1
Assertion
Ref Expression
i3aa (b3 a) = 1

Proof of Theorem i3aa
StepHypRef Expression
1 i31 520 . 2 (b3 1) = 1
2 i3aa.1 . . . 4 a = 1
32li3 252 . . 3 (b3 a) = (b3 1)
43bi1 118 . 2 ((b3 a) ≡ (b3 1)) = 1
51, 4wwbmpr 206 1 (b3 a) = 1
Colors of variables: term
Syntax hints:   = wb 1  1wt 8  3 wi3 14
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i3 46  df-le1 130  df-le2 131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator