| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > li3 | GIF version | ||
| Description: Introduce Kalmbach implication to the left. (Contributed by NM, 2-Nov-1997.) |
| Ref | Expression |
|---|---|
| li3.1 | a = b |
| Ref | Expression |
|---|---|
| li3 | (c →3 a) = (c →3 b) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | li3.1 | . . . . 5 a = b | |
| 2 | 1 | lan 77 | . . . 4 (c⊥ ∩ a) = (c⊥ ∩ b) |
| 3 | 1 | ax-r4 37 | . . . . 5 a⊥ = b⊥ |
| 4 | 3 | lan 77 | . . . 4 (c⊥ ∩ a⊥ ) = (c⊥ ∩ b⊥ ) |
| 5 | 2, 4 | 2or 72 | . . 3 ((c⊥ ∩ a) ∪ (c⊥ ∩ a⊥ )) = ((c⊥ ∩ b) ∪ (c⊥ ∩ b⊥ )) |
| 6 | 1 | lor 70 | . . . 4 (c⊥ ∪ a) = (c⊥ ∪ b) |
| 7 | 6 | lan 77 | . . 3 (c ∩ (c⊥ ∪ a)) = (c ∩ (c⊥ ∪ b)) |
| 8 | 5, 7 | 2or 72 | . 2 (((c⊥ ∩ a) ∪ (c⊥ ∩ a⊥ )) ∪ (c ∩ (c⊥ ∪ a))) = (((c⊥ ∩ b) ∪ (c⊥ ∩ b⊥ )) ∪ (c ∩ (c⊥ ∪ b))) |
| 9 | df-i3 46 | . 2 (c →3 a) = (((c⊥ ∩ a) ∪ (c⊥ ∩ a⊥ )) ∪ (c ∩ (c⊥ ∪ a))) | |
| 10 | df-i3 46 | . 2 (c →3 b) = (((c⊥ ∩ b) ∪ (c⊥ ∩ b⊥ )) ∪ (c ∩ (c⊥ ∪ b))) | |
| 11 | 8, 9, 10 | 3tr1 63 | 1 (c →3 a) = (c →3 b) |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →3 wi3 14 |
| This theorem was proved from axioms: ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-i3 46 |
| This theorem is referenced by: 2i3 254 ud3lem0a 260 bina1 282 i31 520 i3aa 521 i3btr 528 i3li3 539 i3th2 544 i3th3 545 i3th4 546 |
| Copyright terms: Public domain | W3C validator |