QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  i3lem2 GIF version

Theorem i3lem2 505
Description: Lemma for Kalmbach implication. (Contributed by NM, 7-Nov-1997.)
Hypothesis
Ref Expression
i3lem.1 (a3 b) = 1
Assertion
Ref Expression
i3lem2 a C b

Proof of Theorem i3lem2
StepHypRef Expression
1 i3lem.1 . . . . . 6 (a3 b) = 1
21i3lem1 504 . . . . 5 ((ab) ∪ (ab )) = a
32ax-r1 35 . . . 4 a = ((ab) ∪ (ab ))
43df-c1 132 . . 3 a C b
54comcom2 183 . 2 a C b
65comcom5 458 1 a C b
Colors of variables: term
Syntax hints:   = wb 1   C wc 3   wn 4  wo 6  wa 7  1wt 8  3 wi3 14
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i3 46  df-le1 130  df-le2 131  df-c1 132  df-c2 133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator