Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > comcom2 | GIF version |
Description: Commutation equivalence. Kalmbach 83 p. 23. Does not use OML. (Contributed by NM, 27-Aug-1997.) |
Ref | Expression |
---|---|
comcom2.1 | a C b |
Ref | Expression |
---|---|
comcom2 | a C b⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comcom2.1 | . . . . 5 a C b | |
2 | 1 | df-c2 133 | . . . 4 a = ((a ∩ b) ∪ (a ∩ b⊥ )) |
3 | ax-a1 30 | . . . . . 6 b = b⊥ ⊥ | |
4 | 3 | lan 77 | . . . . 5 (a ∩ b) = (a ∩ b⊥ ⊥ ) |
5 | 4 | ax-r5 38 | . . . 4 ((a ∩ b) ∪ (a ∩ b⊥ )) = ((a ∩ b⊥ ⊥ ) ∪ (a ∩ b⊥ )) |
6 | 2, 5 | ax-r2 36 | . . 3 a = ((a ∩ b⊥ ⊥ ) ∪ (a ∩ b⊥ )) |
7 | ax-a2 31 | . . 3 ((a ∩ b⊥ ⊥ ) ∪ (a ∩ b⊥ )) = ((a ∩ b⊥ ) ∪ (a ∩ b⊥ ⊥ )) | |
8 | 6, 7 | ax-r2 36 | . 2 a = ((a ∩ b⊥ ) ∪ (a ∩ b⊥ ⊥ )) |
9 | 8 | df-c1 132 | 1 a C b⊥ |
Copyright terms: Public domain | W3C validator |