Proof of Theorem i3lem1
| Step | Hyp | Ref
| Expression |
| 1 | | coman1 185 |
. . . . . . 7
(a⊥ ∩ b⊥ ) C a⊥ |
| 2 | 1 | comcom 453 |
. . . . . 6
a⊥ C
(a⊥ ∩ b⊥ ) |
| 3 | | comorr 184 |
. . . . . . 7
a⊥ C
(a⊥ ∪ b) |
| 4 | | comorr 184 |
. . . . . . . 8
a C (a ∪ (a⊥ ∩ b)) |
| 5 | 4 | comcom3 454 |
. . . . . . 7
a⊥ C
(a ∪ (a⊥ ∩ b)) |
| 6 | 3, 5 | com2an 484 |
. . . . . 6
a⊥ C
((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b))) |
| 7 | 2, 6 | fh1 469 |
. . . . 5
(a⊥ ∩
((a⊥ ∩ b⊥ ) ∪ ((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b))))) = ((a⊥ ∩ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∩ ((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b))))) |
| 8 | | anass 76 |
. . . . . . . . 9
((a⊥ ∩ a⊥ ) ∩ b⊥ ) = (a⊥ ∩ (a⊥ ∩ b⊥ )) |
| 9 | 8 | ax-r1 35 |
. . . . . . . 8
(a⊥ ∩ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ a⊥ ) ∩ b⊥ ) |
| 10 | | anidm 111 |
. . . . . . . . 9
(a⊥ ∩ a⊥ ) = a⊥ |
| 11 | 10 | ran 78 |
. . . . . . . 8
((a⊥ ∩ a⊥ ) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) |
| 12 | 9, 11 | ax-r2 36 |
. . . . . . 7
(a⊥ ∩ (a⊥ ∩ b⊥ )) = (a⊥ ∩ b⊥ ) |
| 13 | | anass 76 |
. . . . . . . . 9
((a⊥ ∩
(a⊥ ∪ b)) ∩ (a
∪ (a⊥ ∩ b))) = (a⊥ ∩ ((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b)))) |
| 14 | 13 | ax-r1 35 |
. . . . . . . 8
(a⊥ ∩
((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b)))) = ((a⊥ ∩ (a⊥ ∪ b)) ∩ (a
∪ (a⊥ ∩ b))) |
| 15 | | anabs 121 |
. . . . . . . . . 10
(a⊥ ∩ (a⊥ ∪ b)) = a⊥ |
| 16 | 15 | ran 78 |
. . . . . . . . 9
((a⊥ ∩
(a⊥ ∪ b)) ∩ (a
∪ (a⊥ ∩ b))) = (a⊥ ∩ (a ∪ (a⊥ ∩ b))) |
| 17 | | omlan 448 |
. . . . . . . . 9
(a⊥ ∩ (a ∪ (a⊥ ∩ b))) = (a⊥ ∩ b) |
| 18 | 16, 17 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∩
(a⊥ ∪ b)) ∩ (a
∪ (a⊥ ∩ b))) = (a⊥ ∩ b) |
| 19 | 14, 18 | ax-r2 36 |
. . . . . . 7
(a⊥ ∩
((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b)))) = (a⊥ ∩ b) |
| 20 | 12, 19 | 2or 72 |
. . . . . 6
((a⊥ ∩
(a⊥ ∩ b⊥ )) ∪ (a⊥ ∩ ((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b))))) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) |
| 21 | | ax-a2 31 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 22 | 20, 21 | ax-r2 36 |
. . . . 5
((a⊥ ∩
(a⊥ ∩ b⊥ )) ∪ (a⊥ ∩ ((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b))))) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 23 | 7, 22 | ax-r2 36 |
. . . 4
(a⊥ ∩
((a⊥ ∩ b⊥ ) ∪ ((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b))))) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 24 | 23 | ax-r1 35 |
. . 3
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) = (a⊥ ∩ ((a⊥ ∩ b⊥ ) ∪ ((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b))))) |
| 25 | | df2i3 498 |
. . . . . 6
(a →3 b) = ((a⊥ ∩ b⊥ ) ∪ ((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b)))) |
| 26 | 25 | ax-r1 35 |
. . . . 5
((a⊥ ∩ b⊥ ) ∪ ((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b)))) = (a
→3 b) |
| 27 | | i3lem.1 |
. . . . 5
(a →3 b) = 1 |
| 28 | 26, 27 | ax-r2 36 |
. . . 4
((a⊥ ∩ b⊥ ) ∪ ((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b)))) = 1 |
| 29 | 28 | lan 77 |
. . 3
(a⊥ ∩
((a⊥ ∩ b⊥ ) ∪ ((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b))))) = (a⊥ ∩ 1) |
| 30 | 24, 29 | ax-r2 36 |
. 2
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) = (a⊥ ∩ 1) |
| 31 | | an1 106 |
. 2
(a⊥ ∩ 1) =
a⊥ |
| 32 | 30, 31 | ax-r2 36 |
1
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) = a⊥ |