Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > i3lem4 | GIF version |
Description: Lemma for Kalmbach implication. (Contributed by NM, 7-Nov-1997.) |
Ref | Expression |
---|---|
i3lem.1 | (a →3 b) = 1 |
Ref | Expression |
---|---|
i3lem4 | (a⊥ ∪ b) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | i3lem.1 | . . . . 5 (a →3 b) = 1 | |
2 | 1 | i3lem1 504 | . . . 4 ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) = a⊥ |
3 | 2 | ax-r5 38 | . . 3 (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) = (a⊥ ∪ (a ∩ (a⊥ ∪ b))) |
4 | 3 | ax-r1 35 | . 2 (a⊥ ∪ (a ∩ (a⊥ ∪ b))) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) |
5 | omln 446 | . 2 (a⊥ ∪ (a ∩ (a⊥ ∪ b))) = (a⊥ ∪ b) | |
6 | df-i3 46 | . . . 4 (a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) | |
7 | 6 | ax-r1 35 | . . 3 (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) = (a →3 b) |
8 | 7, 1 | ax-r2 36 | . 2 (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) = 1 |
9 | 4, 5, 8 | 3tr2 64 | 1 (a⊥ ∪ b) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 →3 wi3 14 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: i3le 515 |
Copyright terms: Public domain | W3C validator |