Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > comi31 | GIF version |
Description: Commutation theorem. (Contributed by NM, 9-Nov-1997.) |
Ref | Expression |
---|---|
comi31 | a C (a →3 b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coman1 185 | . . . . . . 7 (a⊥ ∩ b) C a⊥ | |
2 | 1 | comcom 453 | . . . . . 6 a⊥ C (a⊥ ∩ b) |
3 | 2 | comcom2 183 | . . . . 5 a⊥ C (a⊥ ∩ b)⊥ |
4 | 3 | comcom5 458 | . . . 4 a C (a⊥ ∩ b) |
5 | coman1 185 | . . . . . . 7 (a⊥ ∩ b⊥ ) C a⊥ | |
6 | 5 | comcom 453 | . . . . . 6 a⊥ C (a⊥ ∩ b⊥ ) |
7 | 6 | comcom2 183 | . . . . 5 a⊥ C (a⊥ ∩ b⊥ )⊥ |
8 | 7 | comcom5 458 | . . . 4 a C (a⊥ ∩ b⊥ ) |
9 | 4, 8 | com2or 483 | . . 3 a C ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
10 | coman1 185 | . . . 4 (a ∩ (a⊥ ∪ b)) C a | |
11 | 10 | comcom 453 | . . 3 a C (a ∩ (a⊥ ∪ b)) |
12 | 9, 11 | com2or 483 | . 2 a C (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) |
13 | df-i3 46 | . . 3 (a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) | |
14 | 13 | ax-r1 35 | . 2 (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) = (a →3 b) |
15 | 12, 14 | cbtr 182 | 1 a C (a →3 b) |
Colors of variables: term |
Syntax hints: C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →3 wi3 14 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: i3abs3 524 u3lemc1 682 u3lemc5 698 u3lem1 736 u3lem2 746 u3lem5 763 u3lem6 767 u3lem7 774 u3lem8 783 u3lem9 784 u3lem13a 789 u3lem13b 790 |
Copyright terms: Public domain | W3C validator |