Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > omln | GIF version |
Description: Orthomodular law. (Contributed by NM, 2-Nov-1997.) |
Ref | Expression |
---|---|
omln | (a⊥ ∪ (a ∩ (a⊥ ∪ b))) = (a⊥ ∪ b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a1 30 | . . . 4 a = a⊥ ⊥ | |
2 | 1 | ran 78 | . . 3 (a ∩ (a⊥ ∪ b)) = (a⊥ ⊥ ∩ (a⊥ ∪ b)) |
3 | 2 | lor 70 | . 2 (a⊥ ∪ (a ∩ (a⊥ ∪ b))) = (a⊥ ∪ (a⊥ ⊥ ∩ (a⊥ ∪ b))) |
4 | oml 445 | . 2 (a⊥ ∪ (a⊥ ⊥ ∩ (a⊥ ∪ b))) = (a⊥ ∪ b) | |
5 | 3, 4 | ax-r2 36 | 1 (a⊥ ∪ (a ∩ (a⊥ ∪ b))) = (a⊥ ∪ b) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 |
This theorem is referenced by: omla 447 i3lem4 507 lem4 511 i3abs1 522 u3lemona 627 kb10iii 893 lem4.6.6i3j0 1098 lem4.6.6i3j1 1099 |
Copyright terms: Public domain | W3C validator |