QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  omln GIF version

Theorem omln 446
Description: Orthomodular law. (Contributed by NM, 2-Nov-1997.)
Assertion
Ref Expression
omln (a ∪ (a ∩ (ab))) = (ab)

Proof of Theorem omln
StepHypRef Expression
1 ax-a1 30 . . . 4 a = a
21ran 78 . . 3 (a ∩ (ab)) = (a ∩ (ab))
32lor 70 . 2 (a ∪ (a ∩ (ab))) = (a ∪ (a ∩ (ab)))
4 oml 445 . 2 (a ∪ (a ∩ (ab))) = (ab)
53, 4ax-r2 36 1 (a ∪ (a ∩ (ab))) = (ab)
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42
This theorem is referenced by:  omla  447  i3lem4  507  lem4  511  i3abs1  522  u3lemona  627  kb10iii  893  lem4.6.6i3j0  1098  lem4.6.6i3j1  1099
  Copyright terms: Public domain W3C validator