Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > i3th8 | GIF version |
Description: Theorem for Kalmbach implication. (Contributed by NM, 19-Nov-1997.) |
Ref | Expression |
---|---|
i3th8 | ((a →3 b)⊥ →3 ((a →3 b) →3 a)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leo 158 | . . 3 (a →3 b)⊥ ≤ ((a →3 b)⊥ ∪ a) | |
2 | lem4 511 | . . . . 5 ((a →3 b) →3 ((a →3 b) →3 a)) = ((a →3 b)⊥ ∪ a) | |
3 | 2 | ax-r1 35 | . . . 4 ((a →3 b)⊥ ∪ a) = ((a →3 b) →3 ((a →3 b) →3 a)) |
4 | i3abs3 524 | . . . 4 ((a →3 b) →3 ((a →3 b) →3 a)) = ((a →3 b) →3 a) | |
5 | 3, 4 | ax-r2 36 | . . 3 ((a →3 b)⊥ ∪ a) = ((a →3 b) →3 a) |
6 | 1, 5 | lbtr 139 | . 2 (a →3 b)⊥ ≤ ((a →3 b) →3 a) |
7 | 6 | lei3 246 | 1 ((a →3 b)⊥ →3 ((a →3 b) →3 a)) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 1wt 8 →3 wi3 14 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |