Proof of Theorem i3con
Step | Hyp | Ref
| Expression |
1 | | ni32 502 |
. . . . 5
(a →3 b)⊥ = ((a ∪ b) ∩
((a ∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ )))) |
2 | | i3n1 249 |
. . . . 5
(b⊥ →3
a⊥ ) = (((b ∩ a⊥ ) ∪ (b ∩ a))
∪ (b⊥ ∩ (b ∪ a⊥ ))) |
3 | 1, 2 | 2or 72 |
. . . 4
((a →3 b)⊥ ∪ (b⊥ →3 a⊥ )) = (((a ∪ b) ∩
((a ∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ )))) ∪ (((b ∩ a⊥ ) ∪ (b ∩ a))
∪ (b⊥ ∩ (b ∪ a⊥ )))) |
4 | | ax-a2 31 |
. . . . 5
(((a ∪ b) ∩ ((a
∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ )))) ∪ (((b ∩ a⊥ ) ∪ (b ∩ a))
∪ (b⊥ ∩ (b ∪ a⊥ )))) = ((((b ∩ a⊥ ) ∪ (b ∩ a))
∪ (b⊥ ∩ (b ∪ a⊥ ))) ∪ ((a ∪ b) ∩
((a ∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ ))))) |
5 | | comor2 462 |
. . . . . . . . . 10
(a ∪ b) C b |
6 | | comor1 461 |
. . . . . . . . . . 11
(a ∪ b) C a |
7 | 6 | comcom2 183 |
. . . . . . . . . 10
(a ∪ b) C a⊥ |
8 | 5, 7 | com2an 484 |
. . . . . . . . 9
(a ∪ b) C (b
∩ a⊥
) |
9 | 5, 6 | com2an 484 |
. . . . . . . . 9
(a ∪ b) C (b
∩ a) |
10 | 8, 9 | com2or 483 |
. . . . . . . 8
(a ∪ b) C ((b
∩ a⊥ ) ∪ (b ∩ a)) |
11 | 5 | comcom2 183 |
. . . . . . . . 9
(a ∪ b) C b⊥ |
12 | 5, 7 | com2or 483 |
. . . . . . . . 9
(a ∪ b) C (b
∪ a⊥
) |
13 | 11, 12 | com2an 484 |
. . . . . . . 8
(a ∪ b) C (b⊥ ∩ (b ∪ a⊥ )) |
14 | 10, 13 | com2or 483 |
. . . . . . 7
(a ∪ b) C (((b
∩ a⊥ ) ∪ (b ∩ a))
∪ (b⊥ ∩ (b ∪ a⊥ ))) |
15 | 6, 11 | com2an 484 |
. . . . . . . 8
(a ∪ b) C (a
∩ b⊥
) |
16 | 6, 11 | com2or 483 |
. . . . . . . . 9
(a ∪ b) C (a
∪ b⊥
) |
17 | 7, 16 | com2an 484 |
. . . . . . . 8
(a ∪ b) C (a⊥ ∩ (a ∪ b⊥ )) |
18 | 15, 17 | com2or 483 |
. . . . . . 7
(a ∪ b) C ((a
∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ ))) |
19 | 14, 18 | fh4 472 |
. . . . . 6
((((b ∩ a⊥ ) ∪ (b ∩ a))
∪ (b⊥ ∩ (b ∪ a⊥ ))) ∪ ((a ∪ b) ∩
((a ∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ ))))) = (((((b ∩ a⊥ ) ∪ (b ∩ a))
∪ (b⊥ ∩ (b ∪ a⊥ ))) ∪ (a ∪ b))
∩ ((((b ∩ a⊥ ) ∪ (b ∩ a))
∪ (b⊥ ∩ (b ∪ a⊥ ))) ∪ ((a ∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ ))))) |
20 | | ax-a3 32 |
. . . . . . . 8
((((b ∩ a⊥ ) ∪ (b ∩ a))
∪ (b⊥ ∩ (b ∪ a⊥ ))) ∪ (a ∪ b)) =
(((b ∩ a⊥ ) ∪ (b ∩ a))
∪ ((b⊥ ∩ (b ∪ a⊥ )) ∪ (a ∪ b))) |
21 | | or12 80 |
. . . . . . . . 9
(((b ∩ a⊥ ) ∪ (b ∩ a))
∪ ((b⊥ ∩ (b ∪ a⊥ )) ∪ (a ∪ b))) =
((b⊥ ∩ (b ∪ a⊥ )) ∪ (((b ∩ a⊥ ) ∪ (b ∩ a))
∪ (a ∪ b))) |
22 | | ax-a3 32 |
. . . . . . . . . . . 12
(((b ∩ a⊥ ) ∪ (b ∩ a))
∪ (a ∪ b)) = ((b ∩
a⊥ ) ∪ ((b ∩ a) ∪
(a ∪ b))) |
23 | | ancom 74 |
. . . . . . . . . . . . . . . . 17
(b ∩ a) = (a ∩
b) |
24 | | lea 160 |
. . . . . . . . . . . . . . . . 17
(a ∩ b) ≤ a |
25 | 23, 24 | bltr 138 |
. . . . . . . . . . . . . . . 16
(b ∩ a) ≤ a |
26 | | leo 158 |
. . . . . . . . . . . . . . . 16
a ≤ (a ∪ b) |
27 | 25, 26 | letr 137 |
. . . . . . . . . . . . . . 15
(b ∩ a) ≤ (a ∪
b) |
28 | 27 | df-le2 131 |
. . . . . . . . . . . . . 14
((b ∩ a) ∪ (a
∪ b)) = (a ∪ b) |
29 | 28 | lor 70 |
. . . . . . . . . . . . 13
((b ∩ a⊥ ) ∪ ((b ∩ a) ∪
(a ∪ b))) = ((b ∩
a⊥ ) ∪ (a ∪ b)) |
30 | | ax-a2 31 |
. . . . . . . . . . . . . 14
((b ∩ a⊥ ) ∪ (a ∪ b)) =
((a ∪ b) ∪ (b
∩ a⊥
)) |
31 | | ax-a3 32 |
. . . . . . . . . . . . . . 15
((a ∪ b) ∪ (b
∩ a⊥ )) = (a ∪ (b ∪
(b ∩ a⊥ ))) |
32 | | orabs 120 |
. . . . . . . . . . . . . . . 16
(b ∪ (b ∩ a⊥ )) = b |
33 | 32 | lor 70 |
. . . . . . . . . . . . . . 15
(a ∪ (b ∪ (b ∩
a⊥ ))) = (a ∪ b) |
34 | 31, 33 | ax-r2 36 |
. . . . . . . . . . . . . 14
((a ∪ b) ∪ (b
∩ a⊥ )) = (a ∪ b) |
35 | 30, 34 | ax-r2 36 |
. . . . . . . . . . . . 13
((b ∩ a⊥ ) ∪ (a ∪ b)) =
(a ∪ b) |
36 | 29, 35 | ax-r2 36 |
. . . . . . . . . . . 12
((b ∩ a⊥ ) ∪ ((b ∩ a) ∪
(a ∪ b))) = (a ∪
b) |
37 | 22, 36 | ax-r2 36 |
. . . . . . . . . . 11
(((b ∩ a⊥ ) ∪ (b ∩ a))
∪ (a ∪ b)) = (a ∪
b) |
38 | 37 | lor 70 |
. . . . . . . . . 10
((b⊥ ∩
(b ∪ a⊥ )) ∪ (((b ∩ a⊥ ) ∪ (b ∩ a))
∪ (a ∪ b))) = ((b⊥ ∩ (b ∪ a⊥ )) ∪ (a ∪ b)) |
39 | | ax-a2 31 |
. . . . . . . . . . 11
((b⊥ ∩
(b ∪ a⊥ )) ∪ (a ∪ b)) =
((a ∪ b) ∪ (b⊥ ∩ (b ∪ a⊥ ))) |
40 | 5 | comcom 453 |
. . . . . . . . . . . . . 14
b C (a ∪ b) |
41 | 40 | comcom3 454 |
. . . . . . . . . . . . 13
b⊥ C
(a ∪ b) |
42 | | comorr 184 |
. . . . . . . . . . . . . 14
b C (b ∪ a⊥ ) |
43 | 42 | comcom3 454 |
. . . . . . . . . . . . 13
b⊥ C
(b ∪ a⊥ ) |
44 | 41, 43 | fh4 472 |
. . . . . . . . . . . 12
((a ∪ b) ∪ (b⊥ ∩ (b ∪ a⊥ ))) = (((a ∪ b) ∪
b⊥ ) ∩ ((a ∪ b) ∪
(b ∪ a⊥ ))) |
45 | | ax-a3 32 |
. . . . . . . . . . . . . . 15
((a ∪ b) ∪ b⊥ ) = (a ∪ (b ∪
b⊥ )) |
46 | | df-t 41 |
. . . . . . . . . . . . . . . . . 18
1 = (b ∪ b⊥ ) |
47 | 46 | ax-r1 35 |
. . . . . . . . . . . . . . . . 17
(b ∪ b⊥ ) = 1 |
48 | 47 | lor 70 |
. . . . . . . . . . . . . . . 16
(a ∪ (b ∪ b⊥ )) = (a ∪ 1) |
49 | | or1 104 |
. . . . . . . . . . . . . . . 16
(a ∪ 1) = 1 |
50 | 48, 49 | ax-r2 36 |
. . . . . . . . . . . . . . 15
(a ∪ (b ∪ b⊥ )) = 1 |
51 | 45, 50 | ax-r2 36 |
. . . . . . . . . . . . . 14
((a ∪ b) ∪ b⊥ ) = 1 |
52 | | ax-a2 31 |
. . . . . . . . . . . . . . . 16
(a ∪ b) = (b ∪
a) |
53 | 52 | ax-r5 38 |
. . . . . . . . . . . . . . 15
((a ∪ b) ∪ (b
∪ a⊥ )) = ((b ∪ a) ∪
(b ∪ a⊥ )) |
54 | | or4 84 |
. . . . . . . . . . . . . . . 16
((b ∪ a) ∪ (b
∪ a⊥ )) = ((b ∪ b) ∪
(a ∪ a⊥ )) |
55 | | df-t 41 |
. . . . . . . . . . . . . . . . . . 19
1 = (a ∪ a⊥ ) |
56 | 55 | ax-r1 35 |
. . . . . . . . . . . . . . . . . 18
(a ∪ a⊥ ) = 1 |
57 | 56 | lor 70 |
. . . . . . . . . . . . . . . . 17
((b ∪ b) ∪ (a
∪ a⊥ )) = ((b ∪ b) ∪
1) |
58 | | or1 104 |
. . . . . . . . . . . . . . . . 17
((b ∪ b) ∪ 1) = 1 |
59 | 57, 58 | ax-r2 36 |
. . . . . . . . . . . . . . . 16
((b ∪ b) ∪ (a
∪ a⊥ )) =
1 |
60 | 54, 59 | ax-r2 36 |
. . . . . . . . . . . . . . 15
((b ∪ a) ∪ (b
∪ a⊥ )) =
1 |
61 | 53, 60 | ax-r2 36 |
. . . . . . . . . . . . . 14
((a ∪ b) ∪ (b
∪ a⊥ )) =
1 |
62 | 51, 61 | 2an 79 |
. . . . . . . . . . . . 13
(((a ∪ b) ∪ b⊥ ) ∩ ((a ∪ b) ∪
(b ∪ a⊥ ))) = (1 ∩
1) |
63 | | an1 106 |
. . . . . . . . . . . . 13
(1 ∩ 1) = 1 |
64 | 62, 63 | ax-r2 36 |
. . . . . . . . . . . 12
(((a ∪ b) ∪ b⊥ ) ∩ ((a ∪ b) ∪
(b ∪ a⊥ ))) = 1 |
65 | 44, 64 | ax-r2 36 |
. . . . . . . . . . 11
((a ∪ b) ∪ (b⊥ ∩ (b ∪ a⊥ ))) = 1 |
66 | 39, 65 | ax-r2 36 |
. . . . . . . . . 10
((b⊥ ∩
(b ∪ a⊥ )) ∪ (a ∪ b)) =
1 |
67 | 38, 66 | ax-r2 36 |
. . . . . . . . 9
((b⊥ ∩
(b ∪ a⊥ )) ∪ (((b ∩ a⊥ ) ∪ (b ∩ a))
∪ (a ∪ b))) = 1 |
68 | 21, 67 | ax-r2 36 |
. . . . . . . 8
(((b ∩ a⊥ ) ∪ (b ∩ a))
∪ ((b⊥ ∩ (b ∪ a⊥ )) ∪ (a ∪ b))) =
1 |
69 | 20, 68 | ax-r2 36 |
. . . . . . 7
((((b ∩ a⊥ ) ∪ (b ∩ a))
∪ (b⊥ ∩ (b ∪ a⊥ ))) ∪ (a ∪ b)) =
1 |
70 | | ax-a3 32 |
. . . . . . . 8
((((b ∩ a⊥ ) ∪ (b ∩ a))
∪ (b⊥ ∩ (b ∪ a⊥ ))) ∪ ((a ∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ )))) = (((b ∩ a⊥ ) ∪ (b ∩ a))
∪ ((b⊥ ∩ (b ∪ a⊥ )) ∪ ((a ∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ ))))) |
71 | | ax-a2 31 |
. . . . . . . . . . 11
((b ∩ a⊥ ) ∪ (b ∩ a)) =
((b ∩ a) ∪ (b
∩ a⊥
)) |
72 | | ancom 74 |
. . . . . . . . . . . 12
(b ∩ a⊥ ) = (a⊥ ∩ b) |
73 | 72 | lor 70 |
. . . . . . . . . . 11
((b ∩ a) ∪ (b
∩ a⊥ )) = ((b ∩ a) ∪
(a⊥ ∩ b)) |
74 | 71, 73 | ax-r2 36 |
. . . . . . . . . 10
((b ∩ a⊥ ) ∪ (b ∩ a)) =
((b ∩ a) ∪ (a⊥ ∩ b)) |
75 | | ax-a3 32 |
. . . . . . . . . . . 12
(((b⊥ ∩
(b ∪ a⊥ )) ∪ (a ∩ b⊥ )) ∪ (a⊥ ∩ (a ∪ b⊥ ))) = ((b⊥ ∩ (b ∪ a⊥ )) ∪ ((a ∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ )))) |
76 | 75 | ax-r1 35 |
. . . . . . . . . . 11
((b⊥ ∩
(b ∪ a⊥ )) ∪ ((a ∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ )))) = (((b⊥ ∩ (b ∪ a⊥ )) ∪ (a ∩ b⊥ )) ∪ (a⊥ ∩ (a ∪ b⊥ ))) |
77 | | ax-a2 31 |
. . . . . . . . . . . . 13
((b⊥ ∩
(b ∪ a⊥ )) ∪ (a ∩ b⊥ )) = ((a ∩ b⊥ ) ∪ (b⊥ ∩ (b ∪ a⊥ ))) |
78 | | coman2 186 |
. . . . . . . . . . . . . . . 16
(a ∩ b⊥ ) C b⊥ |
79 | 78 | comcom 453 |
. . . . . . . . . . . . . . 15
b⊥ C
(a ∩ b⊥ ) |
80 | 79, 43 | fh4 472 |
. . . . . . . . . . . . . 14
((a ∩ b⊥ ) ∪ (b⊥ ∩ (b ∪ a⊥ ))) = (((a ∩ b⊥ ) ∪ b⊥ ) ∩ ((a ∩ b⊥ ) ∪ (b ∪ a⊥ ))) |
81 | | ax-a2 31 |
. . . . . . . . . . . . . . . . 17
((a ∩ b⊥ ) ∪ b⊥ ) = (b⊥ ∪ (a ∩ b⊥ )) |
82 | | ancom 74 |
. . . . . . . . . . . . . . . . . . 19
(a ∩ b⊥ ) = (b⊥ ∩ a) |
83 | 82 | lor 70 |
. . . . . . . . . . . . . . . . . 18
(b⊥ ∪ (a ∩ b⊥ )) = (b⊥ ∪ (b⊥ ∩ a)) |
84 | | orabs 120 |
. . . . . . . . . . . . . . . . . 18
(b⊥ ∪ (b⊥ ∩ a)) = b⊥ |
85 | 83, 84 | ax-r2 36 |
. . . . . . . . . . . . . . . . 17
(b⊥ ∪ (a ∩ b⊥ )) = b⊥ |
86 | 81, 85 | ax-r2 36 |
. . . . . . . . . . . . . . . 16
((a ∩ b⊥ ) ∪ b⊥ ) = b⊥ |
87 | | ax-a2 31 |
. . . . . . . . . . . . . . . . . . 19
(b ∪ a⊥ ) = (a⊥ ∪ b) |
88 | | anor1 88 |
. . . . . . . . . . . . . . . . . . . . 21
(a ∩ b⊥ ) = (a⊥ ∪ b)⊥ |
89 | 88 | con2 67 |
. . . . . . . . . . . . . . . . . . . 20
(a ∩ b⊥ )⊥ = (a⊥ ∪ b) |
90 | 89 | ax-r1 35 |
. . . . . . . . . . . . . . . . . . 19
(a⊥ ∪ b) = (a ∩
b⊥
)⊥ |
91 | 87, 90 | ax-r2 36 |
. . . . . . . . . . . . . . . . . 18
(b ∪ a⊥ ) = (a ∩ b⊥
)⊥ |
92 | 91 | lor 70 |
. . . . . . . . . . . . . . . . 17
((a ∩ b⊥ ) ∪ (b ∪ a⊥ )) = ((a ∩ b⊥ ) ∪ (a ∩ b⊥ )⊥
) |
93 | | df-t 41 |
. . . . . . . . . . . . . . . . . 18
1 = ((a ∩ b⊥ ) ∪ (a ∩ b⊥ )⊥
) |
94 | 93 | ax-r1 35 |
. . . . . . . . . . . . . . . . 17
((a ∩ b⊥ ) ∪ (a ∩ b⊥ )⊥ ) =
1 |
95 | 92, 94 | ax-r2 36 |
. . . . . . . . . . . . . . . 16
((a ∩ b⊥ ) ∪ (b ∪ a⊥ )) = 1 |
96 | 86, 95 | 2an 79 |
. . . . . . . . . . . . . . 15
(((a ∩ b⊥ ) ∪ b⊥ ) ∩ ((a ∩ b⊥ ) ∪ (b ∪ a⊥ ))) = (b⊥ ∩ 1) |
97 | | an1 106 |
. . . . . . . . . . . . . . 15
(b⊥ ∩ 1) =
b⊥ |
98 | 96, 97 | ax-r2 36 |
. . . . . . . . . . . . . 14
(((a ∩ b⊥ ) ∪ b⊥ ) ∩ ((a ∩ b⊥ ) ∪ (b ∪ a⊥ ))) = b⊥ |
99 | 80, 98 | ax-r2 36 |
. . . . . . . . . . . . 13
((a ∩ b⊥ ) ∪ (b⊥ ∩ (b ∪ a⊥ ))) = b⊥ |
100 | 77, 99 | ax-r2 36 |
. . . . . . . . . . . 12
((b⊥ ∩
(b ∪ a⊥ )) ∪ (a ∩ b⊥ )) = b⊥ |
101 | 100 | ax-r5 38 |
. . . . . . . . . . 11
(((b⊥ ∩
(b ∪ a⊥ )) ∪ (a ∩ b⊥ )) ∪ (a⊥ ∩ (a ∪ b⊥ ))) = (b⊥ ∪ (a⊥ ∩ (a ∪ b⊥ ))) |
102 | 76, 101 | ax-r2 36 |
. . . . . . . . . 10
((b⊥ ∩
(b ∪ a⊥ )) ∪ ((a ∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ )))) = (b⊥ ∪ (a⊥ ∩ (a ∪ b⊥ ))) |
103 | 74, 102 | 2or 72 |
. . . . . . . . 9
(((b ∩ a⊥ ) ∪ (b ∩ a))
∪ ((b⊥ ∩ (b ∪ a⊥ )) ∪ ((a ∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ ))))) = (((b ∩ a) ∪
(a⊥ ∩ b)) ∪ (b⊥ ∪ (a⊥ ∩ (a ∪ b⊥ )))) |
104 | | or4 84 |
. . . . . . . . . 10
(((b ∩ a) ∪ (a⊥ ∩ b)) ∪ (b⊥ ∪ (a⊥ ∩ (a ∪ b⊥ )))) = (((b ∩ a) ∪
b⊥ ) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ (a ∪ b⊥ )))) |
105 | | coman1 185 |
. . . . . . . . . . . . . . 15
(a⊥ ∩ b) C a⊥ |
106 | 105 | comcom 453 |
. . . . . . . . . . . . . 14
a⊥ C
(a⊥ ∩ b) |
107 | | comorr 184 |
. . . . . . . . . . . . . . 15
a C (a ∪ b⊥ ) |
108 | 107 | comcom3 454 |
. . . . . . . . . . . . . 14
a⊥ C
(a ∪ b⊥ ) |
109 | 106, 108 | fh4 472 |
. . . . . . . . . . . . 13
((a⊥ ∩ b) ∪ (a⊥ ∩ (a ∪ b⊥ ))) = (((a⊥ ∩ b) ∪ a⊥ ) ∩ ((a⊥ ∩ b) ∪ (a
∪ b⊥
))) |
110 | | ax-a2 31 |
. . . . . . . . . . . . . . . 16
((a⊥ ∩ b) ∪ a⊥ ) = (a⊥ ∪ (a⊥ ∩ b)) |
111 | | orabs 120 |
. . . . . . . . . . . . . . . 16
(a⊥ ∪ (a⊥ ∩ b)) = a⊥ |
112 | 110, 111 | ax-r2 36 |
. . . . . . . . . . . . . . 15
((a⊥ ∩ b) ∪ a⊥ ) = a⊥ |
113 | | anor2 89 |
. . . . . . . . . . . . . . . . . . 19
(a⊥ ∩ b) = (a ∪
b⊥
)⊥ |
114 | 113 | con2 67 |
. . . . . . . . . . . . . . . . . 18
(a⊥ ∩ b)⊥ = (a ∪ b⊥ ) |
115 | 114 | ax-r1 35 |
. . . . . . . . . . . . . . . . 17
(a ∪ b⊥ ) = (a⊥ ∩ b)⊥ |
116 | 115 | lor 70 |
. . . . . . . . . . . . . . . 16
((a⊥ ∩ b) ∪ (a
∪ b⊥ )) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b)⊥ ) |
117 | | df-t 41 |
. . . . . . . . . . . . . . . . 17
1 = ((a⊥ ∩
b) ∪ (a⊥ ∩ b)⊥ ) |
118 | 117 | ax-r1 35 |
. . . . . . . . . . . . . . . 16
((a⊥ ∩ b) ∪ (a⊥ ∩ b)⊥ ) = 1 |
119 | 116, 118 | ax-r2 36 |
. . . . . . . . . . . . . . 15
((a⊥ ∩ b) ∪ (a
∪ b⊥ )) =
1 |
120 | 112, 119 | 2an 79 |
. . . . . . . . . . . . . 14
(((a⊥ ∩
b) ∪ a⊥ ) ∩ ((a⊥ ∩ b) ∪ (a
∪ b⊥ ))) = (a⊥ ∩ 1) |
121 | | an1 106 |
. . . . . . . . . . . . . 14
(a⊥ ∩ 1) =
a⊥ |
122 | 120, 121 | ax-r2 36 |
. . . . . . . . . . . . 13
(((a⊥ ∩
b) ∪ a⊥ ) ∩ ((a⊥ ∩ b) ∪ (a
∪ b⊥ ))) = a⊥ |
123 | 109, 122 | ax-r2 36 |
. . . . . . . . . . . 12
((a⊥ ∩ b) ∪ (a⊥ ∩ (a ∪ b⊥ ))) = a⊥ |
124 | 123 | lor 70 |
. . . . . . . . . . 11
(((b ∩ a) ∪ b⊥ ) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ (a ∪ b⊥ )))) = (((b ∩ a) ∪
b⊥ ) ∪ a⊥ ) |
125 | | df-a 40 |
. . . . . . . . . . . . . . 15
(b ∩ a) = (b⊥ ∪ a⊥
)⊥ |
126 | 125 | con2 67 |
. . . . . . . . . . . . . 14
(b ∩ a)⊥ = (b⊥ ∪ a⊥ ) |
127 | 126 | ax-r1 35 |
. . . . . . . . . . . . 13
(b⊥ ∪ a⊥ ) = (b ∩ a)⊥ |
128 | 127 | lor 70 |
. . . . . . . . . . . 12
((b ∩ a) ∪ (b⊥ ∪ a⊥ )) = ((b ∩ a) ∪
(b ∩ a)⊥ ) |
129 | | ax-a3 32 |
. . . . . . . . . . . 12
(((b ∩ a) ∪ b⊥ ) ∪ a⊥ ) = ((b ∩ a) ∪
(b⊥ ∪ a⊥ )) |
130 | | df-t 41 |
. . . . . . . . . . . 12
1 = ((b ∩ a) ∪ (b
∩ a)⊥
) |
131 | 128, 129,
130 | 3tr1 63 |
. . . . . . . . . . 11
(((b ∩ a) ∪ b⊥ ) ∪ a⊥ ) = 1 |
132 | 124, 131 | ax-r2 36 |
. . . . . . . . . 10
(((b ∩ a) ∪ b⊥ ) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ (a ∪ b⊥ )))) = 1 |
133 | 104, 132 | ax-r2 36 |
. . . . . . . . 9
(((b ∩ a) ∪ (a⊥ ∩ b)) ∪ (b⊥ ∪ (a⊥ ∩ (a ∪ b⊥ )))) = 1 |
134 | 103, 133 | ax-r2 36 |
. . . . . . . 8
(((b ∩ a⊥ ) ∪ (b ∩ a))
∪ ((b⊥ ∩ (b ∪ a⊥ )) ∪ ((a ∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ ))))) = 1 |
135 | 70, 134 | ax-r2 36 |
. . . . . . 7
((((b ∩ a⊥ ) ∪ (b ∩ a))
∪ (b⊥ ∩ (b ∪ a⊥ ))) ∪ ((a ∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ )))) = 1 |
136 | 69, 135 | 2an 79 |
. . . . . 6
(((((b ∩ a⊥ ) ∪ (b ∩ a))
∪ (b⊥ ∩ (b ∪ a⊥ ))) ∪ (a ∪ b))
∩ ((((b ∩ a⊥ ) ∪ (b ∩ a))
∪ (b⊥ ∩ (b ∪ a⊥ ))) ∪ ((a ∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ ))))) = (1 ∩
1) |
137 | 19, 136 | ax-r2 36 |
. . . . 5
((((b ∩ a⊥ ) ∪ (b ∩ a))
∪ (b⊥ ∩ (b ∪ a⊥ ))) ∪ ((a ∪ b) ∩
((a ∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ ))))) = (1 ∩
1) |
138 | 4, 137 | ax-r2 36 |
. . . 4
(((a ∪ b) ∩ ((a
∩ b⊥ ) ∪ (a⊥ ∩ (a ∪ b⊥ )))) ∪ (((b ∩ a⊥ ) ∪ (b ∩ a))
∪ (b⊥ ∩ (b ∪ a⊥ )))) = (1 ∩
1) |
139 | 3, 138 | ax-r2 36 |
. . 3
((a →3 b)⊥ ∪ (b⊥ →3 a⊥ )) = (1 ∩
1) |
140 | 139, 63 | ax-r2 36 |
. 2
((a →3 b)⊥ ∪ (b⊥ →3 a⊥ )) = 1 |
141 | 140 | i0i3 512 |
1
((a →3 b) →3 ((a →3 b) →3 (b⊥ →3 a⊥ ))) = 1 |