Proof of Theorem i3abs3
Step | Hyp | Ref
| Expression |
1 | | df-t 41 |
. . . . . . . 8
1 = (a ∪ a⊥ ) |
2 | 1 | lan 77 |
. . . . . . 7
((a →3 b)⊥ ∩ 1) = ((a →3 b)⊥ ∩ (a ∪ a⊥ )) |
3 | | an1 106 |
. . . . . . 7
((a →3 b)⊥ ∩ 1) = (a →3 b)⊥ |
4 | | comi31 508 |
. . . . . . . . . 10
a C (a →3 b) |
5 | 4 | comcom 453 |
. . . . . . . . 9
(a →3 b) C a |
6 | 5 | comcom3 454 |
. . . . . . . 8
(a →3 b)⊥ C a |
7 | 5 | comcom4 455 |
. . . . . . . 8
(a →3 b)⊥ C a⊥ |
8 | 6, 7 | fh1 469 |
. . . . . . 7
((a →3 b)⊥ ∩ (a ∪ a⊥ )) = (((a →3 b)⊥ ∩ a) ∪ ((a
→3 b)⊥
∩ a⊥
)) |
9 | 2, 3, 8 | 3tr2 64 |
. . . . . 6
(a →3 b)⊥ = (((a →3 b)⊥ ∩ a) ∪ ((a
→3 b)⊥
∩ a⊥
)) |
10 | 9 | ax-r1 35 |
. . . . 5
(((a →3 b)⊥ ∩ a) ∪ ((a
→3 b)⊥
∩ a⊥ )) = (a →3 b)⊥ |
11 | | comid 187 |
. . . . . . . 8
(a →3 b) C (a
→3 b) |
12 | 11 | comcom2 183 |
. . . . . . 7
(a →3 b) C (a
→3 b)⊥ |
13 | 12, 5 | fh1 469 |
. . . . . 6
((a →3 b) ∩ ((a
→3 b)⊥
∪ a)) = (((a →3 b) ∩ (a
→3 b)⊥ )
∪ ((a →3 b) ∩ a)) |
14 | | ax-a2 31 |
. . . . . . 7
(0 ∪ ((a →3
b) ∩ a)) = (((a
→3 b) ∩ a) ∪ 0) |
15 | | dff 101 |
. . . . . . . 8
0 = ((a →3 b) ∩ (a
→3 b)⊥
) |
16 | 15 | ax-r5 38 |
. . . . . . 7
(0 ∪ ((a →3
b) ∩ a)) = (((a
→3 b) ∩ (a →3 b)⊥ ) ∪ ((a →3 b) ∩ a)) |
17 | | or0 102 |
. . . . . . 7
(((a →3 b) ∩ a)
∪ 0) = ((a →3 b) ∩ a) |
18 | 14, 16, 17 | 3tr2 64 |
. . . . . 6
(((a →3 b) ∩ (a
→3 b)⊥ )
∪ ((a →3 b) ∩ a)) =
((a →3 b) ∩ a) |
19 | 13, 18 | ax-r2 36 |
. . . . 5
((a →3 b) ∩ ((a
→3 b)⊥
∪ a)) = ((a →3 b) ∩ a) |
20 | 10, 19 | 2or 72 |
. . . 4
((((a →3 b)⊥ ∩ a) ∪ ((a
→3 b)⊥
∩ a⊥ )) ∪
((a →3 b) ∩ ((a
→3 b)⊥
∪ a))) = ((a →3 b)⊥ ∪ ((a →3 b) ∩ a)) |
21 | 12, 5 | fh4 472 |
. . . . 5
((a →3 b)⊥ ∪ ((a →3 b) ∩ a)) =
(((a →3 b)⊥ ∪ (a →3 b)) ∩ ((a
→3 b)⊥
∪ a)) |
22 | | ax-a2 31 |
. . . . . . . . 9
((a →3 b)⊥ ∪ (a →3 b)) = ((a
→3 b) ∪ (a →3 b)⊥ ) |
23 | | df-t 41 |
. . . . . . . . . 10
1 = ((a →3 b) ∪ (a
→3 b)⊥
) |
24 | 23 | ax-r1 35 |
. . . . . . . . 9
((a →3 b) ∪ (a
→3 b)⊥ ) =
1 |
25 | 22, 24 | ax-r2 36 |
. . . . . . . 8
((a →3 b)⊥ ∪ (a →3 b)) = 1 |
26 | 25 | ran 78 |
. . . . . . 7
(((a →3 b)⊥ ∪ (a →3 b)) ∩ ((a
→3 b)⊥
∪ a)) = (1 ∩ ((a →3 b)⊥ ∪ a)) |
27 | | ancom 74 |
. . . . . . 7
(1 ∩ ((a →3
b)⊥ ∪ a)) = (((a
→3 b)⊥
∪ a) ∩ 1) |
28 | 26, 27 | ax-r2 36 |
. . . . . 6
(((a →3 b)⊥ ∪ (a →3 b)) ∩ ((a
→3 b)⊥
∪ a)) = (((a →3 b)⊥ ∪ a) ∩ 1) |
29 | | an1 106 |
. . . . . 6
(((a →3 b)⊥ ∪ a) ∩ 1) = ((a →3 b)⊥ ∪ a) |
30 | 28, 29 | ax-r2 36 |
. . . . 5
(((a →3 b)⊥ ∪ (a →3 b)) ∩ ((a
→3 b)⊥
∪ a)) = ((a →3 b)⊥ ∪ a) |
31 | 21, 30 | ax-r2 36 |
. . . 4
((a →3 b)⊥ ∪ ((a →3 b) ∩ a)) =
((a →3 b)⊥ ∪ a) |
32 | 20, 31 | ax-r2 36 |
. . 3
((((a →3 b)⊥ ∩ a) ∪ ((a
→3 b)⊥
∩ a⊥ )) ∪
((a →3 b) ∩ ((a
→3 b)⊥
∪ a))) = ((a →3 b)⊥ ∪ a) |
33 | 32 | ax-r1 35 |
. 2
((a →3 b)⊥ ∪ a) = ((((a
→3 b)⊥
∩ a) ∪ ((a →3 b)⊥ ∩ a⊥ )) ∪ ((a →3 b) ∩ ((a
→3 b)⊥
∪ a))) |
34 | | lem4 511 |
. 2
((a →3 b) →3 ((a →3 b) →3 a)) = ((a
→3 b)⊥
∪ a) |
35 | | df-i3 46 |
. 2
((a →3 b) →3 a) = ((((a
→3 b)⊥
∩ a) ∪ ((a →3 b)⊥ ∩ a⊥ )) ∪ ((a →3 b) ∩ ((a
→3 b)⊥
∪ a))) |
36 | 33, 34, 35 | 3tr1 63 |
1
((a →3 b) →3 ((a →3 b) →3 a)) = ((a
→3 b) →3
a) |