Proof of Theorem lem3.3.7i1e2
Step | Hyp | Ref
| Expression |
1 | | oran3 93 |
. . . . . 6
(a⊥ ∪ b⊥ ) = (a ∩ b)⊥ |
2 | 1 | ax-r1 35 |
. . . . 5
(a ∩ b)⊥ = (a⊥ ∪ b⊥ ) |
3 | 2 | lor 70 |
. . . 4
(a ∪ (a ∩ b)⊥ ) = (a ∪ (a⊥ ∪ b⊥ )) |
4 | 3 | ran 78 |
. . 3
((a ∪ (a ∩ b)⊥ ) ∩ (a⊥ ∪ (a ∩ (a ∩
b)))) = ((a ∪ (a⊥ ∪ b⊥ )) ∩ (a⊥ ∪ (a ∩ (a ∩
b)))) |
5 | | ax-a3 32 |
. . . . 5
((a ∪ a⊥ ) ∪ b⊥ ) = (a ∪ (a⊥ ∪ b⊥ )) |
6 | 5 | ax-r1 35 |
. . . 4
(a ∪ (a⊥ ∪ b⊥ )) = ((a ∪ a⊥ ) ∪ b⊥ ) |
7 | 6 | ran 78 |
. . 3
((a ∪ (a⊥ ∪ b⊥ )) ∩ (a⊥ ∪ (a ∩ (a ∩
b)))) = (((a ∪ a⊥ ) ∪ b⊥ ) ∩ (a⊥ ∪ (a ∩ (a ∩
b)))) |
8 | | df-t 41 |
. . . . . . 7
1 = (a ∪ a⊥ ) |
9 | 8 | ax-r1 35 |
. . . . . 6
(a ∪ a⊥ ) = 1 |
10 | 9 | ax-r5 38 |
. . . . 5
((a ∪ a⊥ ) ∪ b⊥ ) = (1 ∪ b⊥ ) |
11 | 10 | ran 78 |
. . . 4
(((a ∪ a⊥ ) ∪ b⊥ ) ∩ (a⊥ ∪ (a ∩ (a ∩
b)))) = ((1 ∪ b⊥ ) ∩ (a⊥ ∪ (a ∩ (a ∩
b)))) |
12 | | or1r 105 |
. . . . 5
(1 ∪ b⊥ ) =
1 |
13 | 12 | ran 78 |
. . . 4
((1 ∪ b⊥ )
∩ (a⊥ ∪ (a ∩ (a ∩
b)))) = (1 ∩ (a⊥ ∪ (a ∩ (a ∩
b)))) |
14 | | an1r 107 |
. . . . 5
(1 ∩ (a⊥ ∪
(a ∩ (a ∩ b)))) =
(a⊥ ∪ (a ∩ (a ∩
b))) |
15 | | anass 76 |
. . . . . . 7
((a ∩ a) ∩ b) =
(a ∩ (a ∩ b)) |
16 | 15 | ax-r1 35 |
. . . . . 6
(a ∩ (a ∩ b)) =
((a ∩ a) ∩ b) |
17 | 16 | lor 70 |
. . . . 5
(a⊥ ∪ (a ∩ (a ∩
b))) = (a⊥ ∪ ((a ∩ a) ∩
b)) |
18 | | anidm 111 |
. . . . . . . 8
(a ∩ a) = a |
19 | 18 | ran 78 |
. . . . . . 7
((a ∩ a) ∩ b) =
(a ∩ b) |
20 | 19 | lor 70 |
. . . . . 6
(a⊥ ∪
((a ∩ a) ∩ b)) =
(a⊥ ∪ (a ∩ b)) |
21 | | ax-a2 31 |
. . . . . . . . 9
(a⊥ ∪ (a ∩ b)) =
((a ∩ b) ∪ a⊥ ) |
22 | | an1 106 |
. . . . . . . . . 10
(((a ∩ b) ∪ a⊥ ) ∩ 1) = ((a ∩ b) ∪
a⊥ ) |
23 | 22 | ax-r1 35 |
. . . . . . . . 9
((a ∩ b) ∪ a⊥ ) = (((a ∩ b) ∪
a⊥ ) ∩
1) |
24 | | df-t 41 |
. . . . . . . . . 10
1 = ((a ∩ b) ∪ (a
∩ b)⊥
) |
25 | 24 | lan 77 |
. . . . . . . . 9
(((a ∩ b) ∪ a⊥ ) ∩ 1) = (((a ∩ b) ∪
a⊥ ) ∩ ((a ∩ b) ∪
(a ∩ b)⊥ )) |
26 | 21, 23, 25 | 3tr 65 |
. . . . . . . 8
(a⊥ ∪ (a ∩ b)) =
(((a ∩ b) ∪ a⊥ ) ∩ ((a ∩ b) ∪
(a ∩ b)⊥ )) |
27 | | ax-a2 31 |
. . . . . . . . 9
((a ∩ b) ∪ (a
∩ b)⊥ ) = ((a ∩ b)⊥ ∪ (a ∩ b)) |
28 | 27 | lan 77 |
. . . . . . . 8
(((a ∩ b) ∪ a⊥ ) ∩ ((a ∩ b) ∪
(a ∩ b)⊥ )) = (((a ∩ b) ∪
a⊥ ) ∩ ((a ∩ b)⊥ ∪ (a ∩ b))) |
29 | 18 | ax-r1 35 |
. . . . . . . . . . 11
a = (a ∩ a) |
30 | 29 | ran 78 |
. . . . . . . . . 10
(a ∩ b) = ((a ∩
a) ∩ b) |
31 | 30 | lor 70 |
. . . . . . . . 9
((a ∩ b)⊥ ∪ (a ∩ b)) =
((a ∩ b)⊥ ∪ ((a ∩ a) ∩
b)) |
32 | 31 | lan 77 |
. . . . . . . 8
(((a ∩ b) ∪ a⊥ ) ∩ ((a ∩ b)⊥ ∪ (a ∩ b))) =
(((a ∩ b) ∪ a⊥ ) ∩ ((a ∩ b)⊥ ∪ ((a ∩ a) ∩
b))) |
33 | 26, 28, 32 | 3tr 65 |
. . . . . . 7
(a⊥ ∪ (a ∩ b)) =
(((a ∩ b) ∪ a⊥ ) ∩ ((a ∩ b)⊥ ∪ ((a ∩ a) ∩
b))) |
34 | 15 | lor 70 |
. . . . . . . 8
((a ∩ b)⊥ ∪ ((a ∩ a) ∩
b)) = ((a ∩ b)⊥ ∪ (a ∩ (a ∩
b))) |
35 | 34 | lan 77 |
. . . . . . 7
(((a ∩ b) ∪ a⊥ ) ∩ ((a ∩ b)⊥ ∪ ((a ∩ a) ∩
b))) = (((a ∩ b) ∪
a⊥ ) ∩ ((a ∩ b)⊥ ∪ (a ∩ (a ∩
b)))) |
36 | | ancom 74 |
. . . . . . . . . 10
(a ∩ b) = (b ∩
a) |
37 | 36 | lan 77 |
. . . . . . . . 9
(a ∩ (a ∩ b)) =
(a ∩ (b ∩ a)) |
38 | 37 | lor 70 |
. . . . . . . 8
((a ∩ b)⊥ ∪ (a ∩ (a ∩
b))) = ((a ∩ b)⊥ ∪ (a ∩ (b ∩
a))) |
39 | 38 | lan 77 |
. . . . . . 7
(((a ∩ b) ∪ a⊥ ) ∩ ((a ∩ b)⊥ ∪ (a ∩ (a ∩
b)))) = (((a ∩ b) ∪
a⊥ ) ∩ ((a ∩ b)⊥ ∪ (a ∩ (b ∩
a)))) |
40 | 33, 35, 39 | 3tr 65 |
. . . . . 6
(a⊥ ∪ (a ∩ b)) =
(((a ∩ b) ∪ a⊥ ) ∩ ((a ∩ b)⊥ ∪ (a ∩ (b ∩
a)))) |
41 | | anass 76 |
. . . . . . . . 9
((a ∩ b) ∩ a) =
(a ∩ (b ∩ a)) |
42 | 41 | ax-r1 35 |
. . . . . . . 8
(a ∩ (b ∩ a)) =
((a ∩ b) ∩ a) |
43 | 42 | lor 70 |
. . . . . . 7
((a ∩ b)⊥ ∪ (a ∩ (b ∩
a))) = ((a ∩ b)⊥ ∪ ((a ∩ b) ∩
a)) |
44 | 43 | lan 77 |
. . . . . 6
(((a ∩ b) ∪ a⊥ ) ∩ ((a ∩ b)⊥ ∪ (a ∩ (b ∩
a)))) = (((a ∩ b) ∪
a⊥ ) ∩ ((a ∩ b)⊥ ∪ ((a ∩ b) ∩
a))) |
45 | 20, 40, 44 | 3tr 65 |
. . . . 5
(a⊥ ∪
((a ∩ a) ∩ b)) =
(((a ∩ b) ∪ a⊥ ) ∩ ((a ∩ b)⊥ ∪ ((a ∩ b) ∩
a))) |
46 | 14, 17, 45 | 3tr 65 |
. . . 4
(1 ∩ (a⊥ ∪
(a ∩ (a ∩ b)))) =
(((a ∩ b) ∪ a⊥ ) ∩ ((a ∩ b)⊥ ∪ ((a ∩ b) ∩
a))) |
47 | 11, 13, 46 | 3tr 65 |
. . 3
(((a ∪ a⊥ ) ∪ b⊥ ) ∩ (a⊥ ∪ (a ∩ (a ∩
b)))) = (((a ∩ b) ∪
a⊥ ) ∩ ((a ∩ b)⊥ ∪ ((a ∩ b) ∩
a))) |
48 | 4, 7, 47 | 3tr 65 |
. 2
((a ∪ (a ∩ b)⊥ ) ∩ (a⊥ ∪ (a ∩ (a ∩
b)))) = (((a ∩ b) ∪
a⊥ ) ∩ ((a ∩ b)⊥ ∪ ((a ∩ b) ∩
a))) |
49 | | df-id1 50 |
. 2
(a ≡1 (a ∩ b)) =
((a ∪ (a ∩ b)⊥ ) ∩ (a⊥ ∪ (a ∩ (a ∩
b)))) |
50 | | df-id1 50 |
. 2
((a ∩ b) ≡1 a) = (((a ∩
b) ∪ a⊥ ) ∩ ((a ∩ b)⊥ ∪ ((a ∩ b) ∩
a))) |
51 | 48, 49, 50 | 3tr1 63 |
1
(a ≡1 (a ∩ b)) =
((a ∩ b) ≡1 a) |