QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  or1r GIF version

Theorem or1r 105
Description: Disjunction with 1. (Contributed by NM, 26-Nov-1997.)
Assertion
Ref Expression
or1r (1 ∪ a) = 1

Proof of Theorem or1r
StepHypRef Expression
1 ax-a2 31 . 2 (1 ∪ a) = (a ∪ 1)
2 or1 104 . 2 (a ∪ 1) = 1
31, 2ax-r2 36 1 (1 ∪ a) = 1
Colors of variables: term
Syntax hints:   = wb 1  wo 6  1wt 8
This theorem was proved from axioms:  ax-a2 31  ax-a4 33  ax-r1 35  ax-r2 36  ax-r5 38
This theorem depends on definitions:  df-t 41
This theorem is referenced by:  ud3lem1c  568  ud3lem3  576  ud5lem1  589  i1orni1  847  lem3.3.7i1e1  1060  lem3.3.7i1e2  1061  lem3.3.7i2e1  1063  lem3.3.7i2e2  1064
  Copyright terms: Public domain W3C validator