Proof of Theorem lem3.3.7i2e1
Step | Hyp | Ref
| Expression |
1 | | or1r 105 |
. . . . . 6
(1 ∪ b⊥ ) =
1 |
2 | 1 | ax-r1 35 |
. . . . 5
1 = (1 ∪ b⊥
) |
3 | 2 | ran 78 |
. . . 4
(1 ∩ ((a ∩ b) ∪ (a⊥ ∩ (a ∩ b)⊥ ))) = ((1 ∪ b⊥ ) ∩ ((a ∩ b) ∪
(a⊥ ∩ (a ∩ b)⊥ ))) |
4 | | an1r 107 |
. . . 4
(1 ∩ ((a ∩ b) ∪ (a⊥ ∩ (a ∩ b)⊥ ))) = ((a ∩ b) ∪
(a⊥ ∩ (a ∩ b)⊥ )) |
5 | | df-t 41 |
. . . . . 6
1 = (a ∪ a⊥ ) |
6 | 5 | ax-r5 38 |
. . . . 5
(1 ∪ b⊥ ) =
((a ∪ a⊥ ) ∪ b⊥ ) |
7 | 6 | ran 78 |
. . . 4
((1 ∪ b⊥ )
∩ ((a ∩ b) ∪ (a⊥ ∩ (a ∩ b)⊥ ))) = (((a ∪ a⊥ ) ∪ b⊥ ) ∩ ((a ∩ b) ∪
(a⊥ ∩ (a ∩ b)⊥ ))) |
8 | 3, 4, 7 | 3tr2 64 |
. . 3
((a ∩ b) ∪ (a⊥ ∩ (a ∩ b)⊥ )) = (((a ∪ a⊥ ) ∪ b⊥ ) ∩ ((a ∩ b) ∪
(a⊥ ∩ (a ∩ b)⊥ ))) |
9 | | ax-a3 32 |
. . . 4
((a ∪ a⊥ ) ∪ b⊥ ) = (a ∪ (a⊥ ∪ b⊥ )) |
10 | 9 | ran 78 |
. . 3
(((a ∪ a⊥ ) ∪ b⊥ ) ∩ ((a ∩ b) ∪
(a⊥ ∩ (a ∩ b)⊥ ))) = ((a ∪ (a⊥ ∪ b⊥ )) ∩ ((a ∩ b) ∪
(a⊥ ∩ (a ∩ b)⊥ ))) |
11 | | oran3 93 |
. . . . 5
(a⊥ ∪ b⊥ ) = (a ∩ b)⊥ |
12 | 11 | lor 70 |
. . . 4
(a ∪ (a⊥ ∪ b⊥ )) = (a ∪ (a ∩
b)⊥ ) |
13 | 12 | ran 78 |
. . 3
((a ∪ (a⊥ ∪ b⊥ )) ∩ ((a ∩ b) ∪
(a⊥ ∩ (a ∩ b)⊥ ))) = ((a ∪ (a ∩
b)⊥ ) ∩ ((a ∩ b) ∪
(a⊥ ∩ (a ∩ b)⊥ ))) |
14 | 8, 10, 13 | 3tr 65 |
. 2
((a ∩ b) ∪ (a⊥ ∩ (a ∩ b)⊥ )) = ((a ∪ (a ∩
b)⊥ ) ∩ ((a ∩ b) ∪
(a⊥ ∩ (a ∩ b)⊥ ))) |
15 | | df-i2 45 |
. 2
(a →2 (a ∩ b)) =
((a ∩ b) ∪ (a⊥ ∩ (a ∩ b)⊥ )) |
16 | | df-id2 51 |
. 2
(a ≡2 (a ∩ b)) =
((a ∪ (a ∩ b)⊥ ) ∩ ((a ∩ b) ∪
(a⊥ ∩ (a ∩ b)⊥ ))) |
17 | 14, 15, 16 | 3tr1 63 |
1
(a →2 (a ∩ b)) =
(a ≡2 (a ∩ b)) |