Proof of Theorem lem3.3.7i2e2
| Step | Hyp | Ref
| Expression |
| 1 | | oran3 93 |
. . . . . 6
(a⊥ ∪ b⊥ ) = (a ∩ b)⊥ |
| 2 | 1 | ax-r1 35 |
. . . . 5
(a ∩ b)⊥ = (a⊥ ∪ b⊥ ) |
| 3 | 2 | lor 70 |
. . . 4
(a ∪ (a ∩ b)⊥ ) = (a ∪ (a⊥ ∪ b⊥ )) |
| 4 | 3 | ran 78 |
. . 3
((a ∪ (a ∩ b)⊥ ) ∩ ((a ∩ b) ∪
(a⊥ ∩ (a ∩ b)⊥ ))) = ((a ∪ (a⊥ ∪ b⊥ )) ∩ ((a ∩ b) ∪
(a⊥ ∩ (a ∩ b)⊥ ))) |
| 5 | | ax-a3 32 |
. . . . 5
((a ∪ a⊥ ) ∪ b⊥ ) = (a ∪ (a⊥ ∪ b⊥ )) |
| 6 | 5 | ax-r1 35 |
. . . 4
(a ∪ (a⊥ ∪ b⊥ )) = ((a ∪ a⊥ ) ∪ b⊥ ) |
| 7 | 6 | ran 78 |
. . 3
((a ∪ (a⊥ ∪ b⊥ )) ∩ ((a ∩ b) ∪
(a⊥ ∩ (a ∩ b)⊥ ))) = (((a ∪ a⊥ ) ∪ b⊥ ) ∩ ((a ∩ b) ∪
(a⊥ ∩ (a ∩ b)⊥ ))) |
| 8 | | df-t 41 |
. . . . . . 7
1 = (a ∪ a⊥ ) |
| 9 | 8 | ax-r1 35 |
. . . . . 6
(a ∪ a⊥ ) = 1 |
| 10 | 9 | ax-r5 38 |
. . . . 5
((a ∪ a⊥ ) ∪ b⊥ ) = (1 ∪ b⊥ ) |
| 11 | 10 | ran 78 |
. . . 4
(((a ∪ a⊥ ) ∪ b⊥ ) ∩ ((a ∩ b) ∪
(a⊥ ∩ (a ∩ b)⊥ ))) = ((1 ∪ b⊥ ) ∩ ((a ∩ b) ∪
(a⊥ ∩ (a ∩ b)⊥ ))) |
| 12 | | or1r 105 |
. . . . 5
(1 ∪ b⊥ ) =
1 |
| 13 | 12 | ran 78 |
. . . 4
((1 ∪ b⊥ )
∩ ((a ∩ b) ∪ (a⊥ ∩ (a ∩ b)⊥ ))) = (1 ∩ ((a ∩ b) ∪
(a⊥ ∩ (a ∩ b)⊥ ))) |
| 14 | | an1r 107 |
. . . . 5
(1 ∩ ((a ∩ b) ∪ (a⊥ ∩ (a ∩ b)⊥ ))) = ((a ∩ b) ∪
(a⊥ ∩ (a ∩ b)⊥ )) |
| 15 | | anor3 90 |
. . . . . 6
(a⊥ ∩ (a ∩ b)⊥ ) = (a ∪ (a ∩
b))⊥ |
| 16 | 15 | lor 70 |
. . . . 5
((a ∩ b) ∪ (a⊥ ∩ (a ∩ b)⊥ )) = ((a ∩ b) ∪
(a ∪ (a ∩ b))⊥ ) |
| 17 | | orabs 120 |
. . . . . . . 8
(a ∪ (a ∩ b)) =
a |
| 18 | 17 | ax-r4 37 |
. . . . . . 7
(a ∪ (a ∩ b))⊥ = a⊥ |
| 19 | 18 | lor 70 |
. . . . . 6
((a ∩ b) ∪ (a
∪ (a ∩ b))⊥ ) = ((a ∩ b) ∪
a⊥ ) |
| 20 | | an1 106 |
. . . . . . . . 9
(((a ∩ b) ∪ a⊥ ) ∩ 1) = ((a ∩ b) ∪
a⊥ ) |
| 21 | 20 | ax-r1 35 |
. . . . . . . 8
((a ∩ b) ∪ a⊥ ) = (((a ∩ b) ∪
a⊥ ) ∩
1) |
| 22 | 8 | lan 77 |
. . . . . . . 8
(((a ∩ b) ∪ a⊥ ) ∩ 1) = (((a ∩ b) ∪
a⊥ ) ∩ (a ∪ a⊥ )) |
| 23 | 21, 22 | ax-r2 36 |
. . . . . . 7
((a ∩ b) ∪ a⊥ ) = (((a ∩ b) ∪
a⊥ ) ∩ (a ∪ a⊥ )) |
| 24 | | lea 160 |
. . . . . . . . . . . 12
(a ∩ b) ≤ a |
| 25 | 24 | df-le2 131 |
. . . . . . . . . . 11
((a ∩ b) ∪ a) =
a |
| 26 | 25 | ax-r1 35 |
. . . . . . . . . 10
a = ((a ∩ b) ∪
a) |
| 27 | 26 | ax-r4 37 |
. . . . . . . . 9
a⊥ = ((a ∩ b) ∪
a)⊥ |
| 28 | 27 | lor 70 |
. . . . . . . 8
(a ∪ a⊥ ) = (a ∪ ((a
∩ b) ∪ a)⊥ ) |
| 29 | 28 | lan 77 |
. . . . . . 7
(((a ∩ b) ∪ a⊥ ) ∩ (a ∪ a⊥ )) = (((a ∩ b) ∪
a⊥ ) ∩ (a ∪ ((a
∩ b) ∪ a)⊥ )) |
| 30 | | anor3 90 |
. . . . . . . . . 10
((a ∩ b)⊥ ∩ a⊥ ) = ((a ∩ b) ∪
a)⊥ |
| 31 | 30 | ax-r1 35 |
. . . . . . . . 9
((a ∩ b) ∪ a)⊥ = ((a ∩ b)⊥ ∩ a⊥ ) |
| 32 | 31 | lor 70 |
. . . . . . . 8
(a ∪ ((a ∩ b) ∪
a)⊥ ) = (a ∪ ((a
∩ b)⊥ ∩ a⊥ )) |
| 33 | 32 | lan 77 |
. . . . . . 7
(((a ∩ b) ∪ a⊥ ) ∩ (a ∪ ((a
∩ b) ∪ a)⊥ )) = (((a ∩ b) ∪
a⊥ ) ∩ (a ∪ ((a
∩ b)⊥ ∩ a⊥ ))) |
| 34 | 23, 29, 33 | 3tr 65 |
. . . . . 6
((a ∩ b) ∪ a⊥ ) = (((a ∩ b) ∪
a⊥ ) ∩ (a ∪ ((a
∩ b)⊥ ∩ a⊥ ))) |
| 35 | 19, 34 | ax-r2 36 |
. . . . 5
((a ∩ b) ∪ (a
∪ (a ∩ b))⊥ ) = (((a ∩ b) ∪
a⊥ ) ∩ (a ∪ ((a
∩ b)⊥ ∩ a⊥ ))) |
| 36 | 14, 16, 35 | 3tr 65 |
. . . 4
(1 ∩ ((a ∩ b) ∪ (a⊥ ∩ (a ∩ b)⊥ ))) = (((a ∩ b) ∪
a⊥ ) ∩ (a ∪ ((a
∩ b)⊥ ∩ a⊥ ))) |
| 37 | 11, 13, 36 | 3tr 65 |
. . 3
(((a ∪ a⊥ ) ∪ b⊥ ) ∩ ((a ∩ b) ∪
(a⊥ ∩ (a ∩ b)⊥ ))) = (((a ∩ b) ∪
a⊥ ) ∩ (a ∪ ((a
∩ b)⊥ ∩ a⊥ ))) |
| 38 | 4, 7, 37 | 3tr 65 |
. 2
((a ∪ (a ∩ b)⊥ ) ∩ ((a ∩ b) ∪
(a⊥ ∩ (a ∩ b)⊥ ))) = (((a ∩ b) ∪
a⊥ ) ∩ (a ∪ ((a
∩ b)⊥ ∩ a⊥ ))) |
| 39 | | df-id2 51 |
. 2
(a ≡2 (a ∩ b)) =
((a ∪ (a ∩ b)⊥ ) ∩ ((a ∩ b) ∪
(a⊥ ∩ (a ∩ b)⊥ ))) |
| 40 | | df-id2 51 |
. 2
((a ∩ b) ≡2 a) = (((a ∩
b) ∪ a⊥ ) ∩ (a ∪ ((a
∩ b)⊥ ∩ a⊥ ))) |
| 41 | 38, 39, 40 | 3tr1 63 |
1
(a ≡2 (a ∩ b)) =
((a ∩ b) ≡2 a) |