QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  lem4.6.6i0j2 GIF version

Theorem lem4.6.6i0j2 1089
Description: Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 0, and j is set to 2. (Contributed by Roy F. Longton, 1-Jul-2005.)
Assertion
Ref Expression
lem4.6.6i0j2 ((a0 b) ∪ (a2 b)) = (a0 b)

Proof of Theorem lem4.6.6i0j2
StepHypRef Expression
1 leid 148 . . . 4 (ab) ≤ (ab)
2 leor 159 . . . . 5 b ≤ (ab)
3 leao1 162 . . . . 5 (ab ) ≤ (ab)
42, 3lel2or 170 . . . 4 (b ∪ (ab )) ≤ (ab)
51, 4lel2or 170 . . 3 ((ab) ∪ (b ∪ (ab ))) ≤ (ab)
6 leo 158 . . 3 (ab) ≤ ((ab) ∪ (b ∪ (ab )))
75, 6lebi 145 . 2 ((ab) ∪ (b ∪ (ab ))) = (ab)
8 df-i0 43 . . 3 (a0 b) = (ab)
9 df-i2 45 . . 3 (a2 b) = (b ∪ (ab ))
108, 92or 72 . 2 ((a0 b) ∪ (a2 b)) = ((ab) ∪ (b ∪ (ab )))
117, 10, 83tr1 63 1 ((a0 b) ∪ (a2 b)) = (a0 b)
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  0 wi0 11  2 wi2 13
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-i0 43  df-i2 45  df-le1 130  df-le2 131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator