Proof of Theorem lem4.6.6i0j3
Step | Hyp | Ref
| Expression |
1 | | leid 148 |
. . . 4
(a⊥ ∪ b) ≤ (a⊥ ∪ b) |
2 | | leao1 162 |
. . . . . 6
(a⊥ ∩ b) ≤ (a⊥ ∪ b) |
3 | | leao1 162 |
. . . . . 6
(a⊥ ∩ b⊥ ) ≤ (a⊥ ∪ b) |
4 | 2, 3 | lel2or 170 |
. . . . 5
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ (a⊥ ∪ b) |
5 | | lear 161 |
. . . . 5
(a ∩ (a⊥ ∪ b)) ≤ (a⊥ ∪ b) |
6 | 4, 5 | lel2or 170 |
. . . 4
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ≤ (a⊥ ∪ b) |
7 | 1, 6 | lel2or 170 |
. . 3
((a⊥ ∪ b) ∪ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) ≤ (a⊥ ∪ b) |
8 | | leo 158 |
. . 3
(a⊥ ∪ b) ≤ ((a⊥ ∪ b) ∪ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) |
9 | 7, 8 | lebi 145 |
. 2
((a⊥ ∪ b) ∪ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) = (a⊥ ∪ b) |
10 | | df-i0 43 |
. . 3
(a →0 b) = (a⊥ ∪ b) |
11 | | df-i3 46 |
. . 3
(a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) |
12 | 10, 11 | 2or 72 |
. 2
((a →0 b) ∪ (a
→3 b)) = ((a⊥ ∪ b) ∪ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))) |
13 | 9, 12, 10 | 3tr1 63 |
1
((a →0 b) ∪ (a
→3 b)) = (a →0 b) |