Proof of Theorem lem4.6.6i0j4
| Step | Hyp | Ref
| Expression |
| 1 | | leid 148 |
. . . 4
(a⊥ ∪ b) ≤ (a⊥ ∪ b) |
| 2 | | leao4 165 |
. . . . . 6
(a ∩ b) ≤ (a⊥ ∪ b) |
| 3 | | leao1 162 |
. . . . . 6
(a⊥ ∩ b) ≤ (a⊥ ∪ b) |
| 4 | 2, 3 | lel2or 170 |
. . . . 5
((a ∩ b) ∪ (a⊥ ∩ b)) ≤ (a⊥ ∪ b) |
| 5 | | lea 160 |
. . . . 5
((a⊥ ∪ b) ∩ b⊥ ) ≤ (a⊥ ∪ b) |
| 6 | 4, 5 | lel2or 170 |
. . . 4
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) ≤ (a⊥ ∪ b) |
| 7 | 1, 6 | lel2or 170 |
. . 3
((a⊥ ∪ b) ∪ (((a
∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ ))) ≤ (a⊥ ∪ b) |
| 8 | | leo 158 |
. . 3
(a⊥ ∪ b) ≤ ((a⊥ ∪ b) ∪ (((a
∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ ))) |
| 9 | 7, 8 | lebi 145 |
. 2
((a⊥ ∪ b) ∪ (((a
∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ ))) = (a⊥ ∪ b) |
| 10 | | df-i0 43 |
. . 3
(a →0 b) = (a⊥ ∪ b) |
| 11 | | df-i4 47 |
. . 3
(a →4 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) |
| 12 | 10, 11 | 2or 72 |
. 2
((a →0 b) ∪ (a
→4 b)) = ((a⊥ ∪ b) ∪ (((a
∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ ))) |
| 13 | 9, 12, 10 | 3tr1 63 |
1
((a →0 b) ∪ (a
→4 b)) = (a →0 b) |