Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > nomcon0 | GIF version |
Description: Lemma for "Non-Orthomodular Models..." paper. (Contributed by NM, 7-Feb-1999.) |
Ref | Expression |
---|---|
nomcon0 | (a ≡0 b) = (b⊥ ≡0 a⊥ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a2 31 | . . . 4 (a⊥ ∪ b) = (b ∪ a⊥ ) | |
2 | ax-a1 30 | . . . . 5 b = b⊥ ⊥ | |
3 | 2 | ax-r5 38 | . . . 4 (b ∪ a⊥ ) = (b⊥ ⊥ ∪ a⊥ ) |
4 | 1, 3 | ax-r2 36 | . . 3 (a⊥ ∪ b) = (b⊥ ⊥ ∪ a⊥ ) |
5 | ax-a2 31 | . . . 4 (b⊥ ∪ a) = (a ∪ b⊥ ) | |
6 | ax-a1 30 | . . . . 5 a = a⊥ ⊥ | |
7 | 6 | ax-r5 38 | . . . 4 (a ∪ b⊥ ) = (a⊥ ⊥ ∪ b⊥ ) |
8 | 5, 7 | ax-r2 36 | . . 3 (b⊥ ∪ a) = (a⊥ ⊥ ∪ b⊥ ) |
9 | 4, 8 | 2an 79 | . 2 ((a⊥ ∪ b) ∩ (b⊥ ∪ a)) = ((b⊥ ⊥ ∪ a⊥ ) ∩ (a⊥ ⊥ ∪ b⊥ )) |
10 | df-id0 49 | . 2 (a ≡0 b) = ((a⊥ ∪ b) ∩ (b⊥ ∪ a)) | |
11 | df-id0 49 | . 2 (b⊥ ≡0 a⊥ ) = ((b⊥ ⊥ ∪ a⊥ ) ∩ (a⊥ ⊥ ∪ b⊥ )) | |
12 | 9, 10, 11 | 3tr1 63 | 1 (a ≡0 b) = (b⊥ ≡0 a⊥ ) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 ≡0 wid0 17 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-id0 49 |
This theorem is referenced by: nom50 331 |
Copyright terms: Public domain | W3C validator |