![]() |
Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > QLE Home > Th. List > nomcon1 | GIF version |
Description: Lemma for "Non-Orthomodular Models..." paper. (Contributed by NM, 7-Feb-1999.) |
Ref | Expression |
---|---|
nomcon1 | (a ≡1 b) = (b⊥ ≡2 a⊥ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a2 31 | . . . 4 (a ∪ b⊥ ) = (b⊥ ∪ a) | |
2 | ax-a1 30 | . . . . 5 a = a⊥ ⊥ | |
3 | 2 | lor 70 | . . . 4 (b⊥ ∪ a) = (b⊥ ∪ a⊥ ⊥ ) |
4 | 1, 3 | ax-r2 36 | . . 3 (a ∪ b⊥ ) = (b⊥ ∪ a⊥ ⊥ ) |
5 | ancom 74 | . . . . 5 (a ∩ b) = (b ∩ a) | |
6 | ax-a1 30 | . . . . . 6 b = b⊥ ⊥ | |
7 | 6, 2 | 2an 79 | . . . . 5 (b ∩ a) = (b⊥ ⊥ ∩ a⊥ ⊥ ) |
8 | 5, 7 | ax-r2 36 | . . . 4 (a ∩ b) = (b⊥ ⊥ ∩ a⊥ ⊥ ) |
9 | 8 | lor 70 | . . 3 (a⊥ ∪ (a ∩ b)) = (a⊥ ∪ (b⊥ ⊥ ∩ a⊥ ⊥ )) |
10 | 4, 9 | 2an 79 | . 2 ((a ∪ b⊥ ) ∩ (a⊥ ∪ (a ∩ b))) = ((b⊥ ∪ a⊥ ⊥ ) ∩ (a⊥ ∪ (b⊥ ⊥ ∩ a⊥ ⊥ ))) |
11 | df-id1 50 | . 2 (a ≡1 b) = ((a ∪ b⊥ ) ∩ (a⊥ ∪ (a ∩ b))) | |
12 | df-id2 51 | . 2 (b⊥ ≡2 a⊥ ) = ((b⊥ ∪ a⊥ ⊥ ) ∩ (a⊥ ∪ (b⊥ ⊥ ∩ a⊥ ⊥ ))) | |
13 | 10, 11, 12 | 3tr1 63 | 1 (a ≡1 b) = (b⊥ ≡2 a⊥ ) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 ≡1 wid1 18 ≡2 wid2 19 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-id1 50 df-id2 51 |
This theorem is referenced by: nomcon4 305 nom51 332 |
Copyright terms: Public domain | W3C validator |