QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  nomcon1 GIF version

Theorem nomcon1 302
Description: Lemma for "Non-Orthomodular Models..." paper. (Contributed by NM, 7-Feb-1999.)
Assertion
Ref Expression
nomcon1 (a1 b) = (b2 a )

Proof of Theorem nomcon1
StepHypRef Expression
1 ax-a2 31 . . . 4 (ab ) = (ba)
2 ax-a1 30 . . . . 5 a = a
32lor 70 . . . 4 (ba) = (ba )
41, 3ax-r2 36 . . 3 (ab ) = (ba )
5 ancom 74 . . . . 5 (ab) = (ba)
6 ax-a1 30 . . . . . 6 b = b
76, 22an 79 . . . . 5 (ba) = (b a )
85, 7ax-r2 36 . . . 4 (ab) = (b a )
98lor 70 . . 3 (a ∪ (ab)) = (a ∪ (b a ))
104, 92an 79 . 2 ((ab ) ∩ (a ∪ (ab))) = ((ba ) ∩ (a ∪ (b a )))
11 df-id1 50 . 2 (a1 b) = ((ab ) ∩ (a ∪ (ab)))
12 df-id2 51 . 2 (b2 a ) = ((ba ) ∩ (a ∪ (b a )))
1310, 11, 123tr1 63 1 (a1 b) = (b2 a )
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  1 wid1 18  2 wid2 19
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-id1 50  df-id2 51
This theorem is referenced by:  nomcon4  305  nom51  332
  Copyright terms: Public domain W3C validator