Proof of Theorem nom50
Step | Hyp | Ref
| Expression |
1 | | ancom 74 |
. . . . . . . 8
(b⊥ ∩ a⊥ ) = (a⊥ ∩ b⊥ ) |
2 | | anor3 90 |
. . . . . . . 8
(a⊥ ∩ b⊥ ) = (a ∪ b)⊥ |
3 | 1, 2 | ax-r2 36 |
. . . . . . 7
(b⊥ ∩ a⊥ ) = (a ∪ b)⊥ |
4 | 3 | lor 70 |
. . . . . 6
(b⊥
⊥ ∪ (b⊥ ∩ a⊥ )) = (b⊥ ⊥ ∪
(a ∪ b)⊥ ) |
5 | 3 | ax-r4 37 |
. . . . . . 7
(b⊥ ∩ a⊥ )⊥ = (a ∪ b)⊥
⊥ |
6 | 5 | ax-r5 38 |
. . . . . 6
((b⊥ ∩ a⊥ )⊥ ∪
b⊥ ) = ((a ∪ b)⊥ ⊥ ∪
b⊥ ) |
7 | 4, 6 | 2an 79 |
. . . . 5
((b⊥
⊥ ∪ (b⊥ ∩ a⊥ )) ∩ ((b⊥ ∩ a⊥ )⊥ ∪
b⊥ )) = ((b⊥ ⊥ ∪
(a ∪ b)⊥ ) ∩ ((a ∪ b)⊥ ⊥ ∪
b⊥ )) |
8 | 7 | ax-r1 35 |
. . . 4
((b⊥
⊥ ∪ (a ∪ b)⊥ ) ∩ ((a ∪ b)⊥ ⊥ ∪
b⊥ )) = ((b⊥ ⊥ ∪
(b⊥ ∩ a⊥ )) ∩ ((b⊥ ∩ a⊥ )⊥ ∪
b⊥ )) |
9 | | df-id0 49 |
. . . 4
(b⊥ ≡0
(a ∪ b)⊥ ) = ((b⊥ ⊥ ∪
(a ∪ b)⊥ ) ∩ ((a ∪ b)⊥ ⊥ ∪
b⊥ )) |
10 | | df-id0 49 |
. . . 4
(b⊥ ≡0
(b⊥ ∩ a⊥ )) = ((b⊥ ⊥ ∪
(b⊥ ∩ a⊥ )) ∩ ((b⊥ ∩ a⊥ )⊥ ∪
b⊥ )) |
11 | 8, 9, 10 | 3tr1 63 |
. . 3
(b⊥ ≡0
(a ∪ b)⊥ ) = (b⊥ ≡0 (b⊥ ∩ a⊥ )) |
12 | | nom20 313 |
. . 3
(b⊥ ≡0
(b⊥ ∩ a⊥ )) = (b⊥ →1 a⊥ ) |
13 | 11, 12 | ax-r2 36 |
. 2
(b⊥ ≡0
(a ∪ b)⊥ ) = (b⊥ →1 a⊥ ) |
14 | | nomcon0 301 |
. 2
((a ∪ b) ≡0 b) = (b⊥ ≡0 (a ∪ b)⊥ ) |
15 | | i2i1 267 |
. 2
(a →2 b) = (b⊥ →1 a⊥ ) |
16 | 13, 14, 15 | 3tr1 63 |
1
((a ∪ b) ≡0 b) = (a
→2 b) |