QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  nomcon2 GIF version

Theorem nomcon2 303
Description: Lemma for "Non-Orthomodular Models..." paper. (Contributed by NM, 7-Feb-1999.)
Assertion
Ref Expression
nomcon2 (a2 b) = (b1 a )

Proof of Theorem nomcon2
StepHypRef Expression
1 ax-a2 31 . . . 4 (ab ) = (ba)
2 ax-a1 30 . . . . 5 a = a
32lor 70 . . . 4 (ba) = (ba )
41, 3ax-r2 36 . . 3 (ab ) = (ba )
5 ax-a1 30 . . . 4 b = b
6 ancom 74 . . . 4 (ab ) = (ba )
75, 62or 72 . . 3 (b ∪ (ab )) = (b ∪ (ba ))
84, 72an 79 . 2 ((ab ) ∩ (b ∪ (ab ))) = ((ba ) ∩ (b ∪ (ba )))
9 df-id2 51 . 2 (a2 b) = ((ab ) ∩ (b ∪ (ab )))
10 df-id1 50 . 2 (b1 a ) = ((ba ) ∩ (b ∪ (ba )))
118, 9, 103tr1 63 1 (a2 b) = (b1 a )
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  1 wid1 18  2 wid2 19
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-id1 50  df-id2 51
This theorem is referenced by:  nomcon3  304  nom52  333
  Copyright terms: Public domain W3C validator