Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > nomcon3 | GIF version |
Description: Lemma for "Non-Orthomodular Models..." paper. (Contributed by NM, 7-Feb-1999.) |
Ref | Expression |
---|---|
nomcon3 | (a ≡3 b) = (b⊥ ≡4 a⊥ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nomcon2 303 | . 2 (b ≡2 a) = (a⊥ ≡1 b⊥ ) | |
2 | nomb32 300 | . 2 (a ≡3 b) = (b ≡2 a) | |
3 | nomb41 299 | . 2 (b⊥ ≡4 a⊥ ) = (a⊥ ≡1 b⊥ ) | |
4 | 1, 2, 3 | 3tr1 63 | 1 (a ≡3 b) = (b⊥ ≡4 a⊥ ) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ≡1 wid1 18 ≡2 wid2 19 ≡3 wid3 20 ≡4 wid4 21 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-id1 50 df-id2 51 df-id3 52 df-id4 53 |
This theorem is referenced by: nom53 334 |
Copyright terms: Public domain | W3C validator |