| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > oa3-2wto2 | GIF version | ||
| Description: Derivation of 3-OA variant from weaker version. (Contributed by NM, 25-Dec-1998.) |
| Ref | Expression |
|---|---|
| oa3-2wto2.1 | (a⊥ ∩ (a ∪ (b ∩ ((a ∩ b) ∪ ((a →1 c) ∩ (b →1 c)))))) ≤ c |
| Ref | Expression |
|---|---|
| oa3-2wto2 | ((a →1 c) ∩ (a ∪ (b ∩ ((a ∩ b) ∪ ((a →1 c) ∩ (b →1 c)))))) ≤ c |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oa3-2wto2.1 | . 2 (a⊥ ∩ (a ∪ (b ∩ ((a ∩ b) ∪ ((a →1 c) ∩ (b →1 c)))))) ≤ c | |
| 2 | 1 | oas 925 | 1 ((a →1 c) ∩ (a ∪ (b ∩ ((a ∩ b) ∪ ((a →1 c) ∩ (b →1 c)))))) ≤ c |
| Colors of variables: term |
| Syntax hints: ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |