Proof of Theorem oa3-2to4
Step | Hyp | Ref
| Expression |
1 | | oa3-4lem 983 |
. . 3
(a⊥ ∩ (a ∪ (b ∩
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (((a ∩ c) ∪
(a⊥ ∩ 1)) ∩
((b ∩ c) ∪ (b⊥ ∩ 1))))))) = (a⊥ ∩ (a ∪ (b ∩
((a ≡ b) ∪ ((a
→1 c) ∩ (b →1 c)))))) |
2 | 1 | ax-r1 35 |
. 2
(a⊥ ∩ (a ∪ (b ∩
((a ≡ b) ∪ ((a
→1 c) ∩ (b →1 c)))))) = (a⊥ ∩ (a ∪ (b ∩
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (((a ∩ c) ∪
(a⊥ ∩ 1)) ∩
((b ∩ c) ∪ (b⊥ ∩ 1))))))) |
3 | | leid 148 |
. . 3
a⊥ ≤ a⊥ |
4 | | leid 148 |
. . 3
b⊥ ≤ b⊥ |
5 | | le1 146 |
. . 3
c⊥ ≤
1 |
6 | | an1 106 |
. . . . . . 7
(c ∩ 1) = c |
7 | | dff 101 |
. . . . . . . . . 10
0 = (a ∩ a⊥ ) |
8 | | dff 101 |
. . . . . . . . . 10
0 = (b ∩ b⊥ ) |
9 | 7, 8 | 2or 72 |
. . . . . . . . 9
(0 ∪ 0) = ((a ∩ a⊥ ) ∪ (b ∩ b⊥ )) |
10 | 9 | ax-r1 35 |
. . . . . . . 8
((a ∩ a⊥ ) ∪ (b ∩ b⊥ )) = (0 ∪
0) |
11 | | or0 102 |
. . . . . . . 8
(0 ∪ 0) = 0 |
12 | 10, 11 | ax-r2 36 |
. . . . . . 7
((a ∩ a⊥ ) ∪ (b ∩ b⊥ )) = 0 |
13 | 6, 12 | 2or 72 |
. . . . . 6
((c ∩ 1) ∪ ((a ∩ a⊥ ) ∪ (b ∩ b⊥ ))) = (c ∪ 0) |
14 | | or0 102 |
. . . . . 6
(c ∪ 0) = c |
15 | 13, 14 | ax-r2 36 |
. . . . 5
((c ∩ 1) ∪ ((a ∩ a⊥ ) ∪ (b ∩ b⊥ ))) = c |
16 | 15 | ax-r1 35 |
. . . 4
c = ((c ∩ 1) ∪ ((a ∩ a⊥ ) ∪ (b ∩ b⊥ ))) |
17 | | ax-a2 31 |
. . . 4
((c ∩ 1) ∪ ((a ∩ a⊥ ) ∪ (b ∩ b⊥ ))) = (((a ∩ a⊥ ) ∪ (b ∩ b⊥ )) ∪ (c ∩ 1)) |
18 | 16, 17 | ax-r2 36 |
. . 3
c = (((a ∩ a⊥ ) ∪ (b ∩ b⊥ )) ∪ (c ∩ 1)) |
19 | | oa3-2lemb 979 |
. . . 4
((a →1 c) ∩ (a
∪ (b ∩ (((a ∩ b) ∪
((a →1 c) ∩ (b
→1 c))) ∪ (((a ∩ c) ∪
((a →1 c) ∩ (c
→1 c))) ∩ ((b ∩ c) ∪
((b →1 c) ∩ (c
→1 c)))))))) = ((a →1 c) ∩ (a
∪ (b ∩ ((a ∩ b) ∪
((a →1 c) ∩ (b
→1 c)))))) |
20 | | oa3-2to4.1 |
. . . 4
((a →1 c) ∩ (a
∪ (b ∩ ((a ∩ b) ∪
((a →1 c) ∩ (b
→1 c)))))) ≤ c |
21 | 19, 20 | bltr 138 |
. . 3
((a →1 c) ∩ (a
∪ (b ∩ (((a ∩ b) ∪
((a →1 c) ∩ (b
→1 c))) ∪ (((a ∩ c) ∪
((a →1 c) ∩ (c
→1 c))) ∩ ((b ∩ c) ∪
((b →1 c) ∩ (c
→1 c)))))))) ≤ c |
22 | 3, 4, 5, 18, 21 | oa4to6dual 964 |
. 2
(a⊥ ∩ (a ∪ (b ∩
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (((a ∩ c) ∪
(a⊥ ∩ 1)) ∩
((b ∩ c) ∪ (b⊥ ∩ 1))))))) ≤ c |
23 | 2, 22 | bltr 138 |
1
(a⊥ ∩ (a ∪ (b ∩
((a ≡ b) ∪ ((a
→1 c) ∩ (b →1 c)))))) ≤ c |