Proof of Theorem oas
| Step | Hyp | Ref
| Expression |
| 1 | | oml 445 |
. . . . . 6
(a ∪ (a⊥ ∩ (a ∪ b))) =
(a ∪ b) |
| 2 | 1 | ax-r1 35 |
. . . . 5
(a ∪ b) = (a ∪
(a⊥ ∩ (a ∪ b))) |
| 3 | | lea 160 |
. . . . . . 7
(a⊥ ∩ (a ∪ b)) ≤
a⊥ |
| 4 | | oas.1 |
. . . . . . 7
(a⊥ ∩ (a ∪ b)) ≤
c |
| 5 | 3, 4 | ler2an 173 |
. . . . . 6
(a⊥ ∩ (a ∪ b)) ≤
(a⊥ ∩ c) |
| 6 | 5 | lelor 166 |
. . . . 5
(a ∪ (a⊥ ∩ (a ∪ b)))
≤ (a ∪ (a⊥ ∩ c)) |
| 7 | 2, 6 | bltr 138 |
. . . 4
(a ∪ b) ≤ (a ∪
(a⊥ ∩ c)) |
| 8 | 7 | lelan 167 |
. . 3
((a →1 c) ∩ (a
∪ b)) ≤ ((a →1 c) ∩ (a
∪ (a⊥ ∩ c))) |
| 9 | | u1lemc1 680 |
. . . . 5
a C (a →1 c) |
| 10 | | comanr1 464 |
. . . . . 6
a⊥ C
(a⊥ ∩ c) |
| 11 | 10 | comcom6 459 |
. . . . 5
a C (a⊥ ∩ c) |
| 12 | 9, 11 | fh2 470 |
. . . 4
((a →1 c) ∩ (a
∪ (a⊥ ∩ c))) = (((a
→1 c) ∩ a) ∪ ((a
→1 c) ∩ (a⊥ ∩ c))) |
| 13 | | u1lemaa 600 |
. . . . 5
((a →1 c) ∩ a) =
(a ∩ c) |
| 14 | | ancom 74 |
. . . . . 6
((a →1 c) ∩ (a⊥ ∩ c)) = ((a⊥ ∩ c) ∩ (a
→1 c)) |
| 15 | | lea 160 |
. . . . . . . 8
(a⊥ ∩ c) ≤ a⊥ |
| 16 | | leo 158 |
. . . . . . . . 9
a⊥ ≤ (a⊥ ∪ (a ∩ c)) |
| 17 | | df-i1 44 |
. . . . . . . . . 10
(a →1 c) = (a⊥ ∪ (a ∩ c)) |
| 18 | 17 | ax-r1 35 |
. . . . . . . . 9
(a⊥ ∪ (a ∩ c)) =
(a →1 c) |
| 19 | 16, 18 | lbtr 139 |
. . . . . . . 8
a⊥ ≤ (a →1 c) |
| 20 | 15, 19 | letr 137 |
. . . . . . 7
(a⊥ ∩ c) ≤ (a
→1 c) |
| 21 | 20 | df2le2 136 |
. . . . . 6
((a⊥ ∩ c) ∩ (a
→1 c)) = (a⊥ ∩ c) |
| 22 | 14, 21 | ax-r2 36 |
. . . . 5
((a →1 c) ∩ (a⊥ ∩ c)) = (a⊥ ∩ c) |
| 23 | 13, 22 | 2or 72 |
. . . 4
(((a →1 c) ∩ a)
∪ ((a →1 c) ∩ (a⊥ ∩ c))) = ((a ∩
c) ∪ (a⊥ ∩ c)) |
| 24 | 12, 23 | ax-r2 36 |
. . 3
((a →1 c) ∩ (a
∪ (a⊥ ∩ c))) = ((a ∩
c) ∪ (a⊥ ∩ c)) |
| 25 | 8, 24 | lbtr 139 |
. 2
((a →1 c) ∩ (a
∪ b)) ≤ ((a ∩ c) ∪
(a⊥ ∩ c)) |
| 26 | | lear 161 |
. . 3
(a ∩ c) ≤ c |
| 27 | | lear 161 |
. . 3
(a⊥ ∩ c) ≤ c |
| 28 | 26, 27 | lel2or 170 |
. 2
((a ∩ c) ∪ (a⊥ ∩ c)) ≤ c |
| 29 | 25, 28 | letr 137 |
1
((a →1 c) ∩ (a
∪ b)) ≤ c |