Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > oa4lem2 | GIF version |
Description: Lemma for 3-var to 4-var OA. (Contributed by NM, 27-Nov-1998.) |
Ref | Expression |
---|---|
oa4lem1.1 | a ≤ b⊥ |
oa4lem1.2 | c ≤ d⊥ |
Ref | Expression |
---|---|
oa4lem2 | (c ∪ d) ≤ ((a ∪ c)⊥ →2 d) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leor 159 | . . . . 5 c ≤ (a ∪ c) | |
2 | ax-a1 30 | . . . . 5 (a ∪ c) = (a ∪ c)⊥ ⊥ | |
3 | 1, 2 | lbtr 139 | . . . 4 c ≤ (a ∪ c)⊥ ⊥ |
4 | oa4lem1.2 | . . . 4 c ≤ d⊥ | |
5 | 3, 4 | ler2an 173 | . . 3 c ≤ ((a ∪ c)⊥ ⊥ ∩ d⊥ ) |
6 | 5 | lelor 166 | . 2 (d ∪ c) ≤ (d ∪ ((a ∪ c)⊥ ⊥ ∩ d⊥ )) |
7 | ax-a2 31 | . 2 (c ∪ d) = (d ∪ c) | |
8 | df-i2 45 | . 2 ((a ∪ c)⊥ →2 d) = (d ∪ ((a ∪ c)⊥ ⊥ ∩ d⊥ )) | |
9 | 6, 7, 8 | le3tr1 140 | 1 (c ∪ d) ≤ ((a ∪ c)⊥ →2 d) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i2 45 df-le1 130 df-le2 131 |
This theorem is referenced by: oa4lem3 939 |
Copyright terms: Public domain | W3C validator |