| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > oa4lem1 | GIF version | ||
| Description: Lemma for 3-var to 4-var OA. (Contributed by NM, 27-Nov-1998.) |
| Ref | Expression |
|---|---|
| oa4lem1.1 | a ≤ b⊥ |
| oa4lem1.2 | c ≤ d⊥ |
| Ref | Expression |
|---|---|
| oa4lem1 | (a ∪ b) ≤ ((a ∪ c)⊥ →2 b) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leo 158 | . . . . 5 a ≤ (a ∪ c) | |
| 2 | ax-a1 30 | . . . . 5 (a ∪ c) = (a ∪ c)⊥ ⊥ | |
| 3 | 1, 2 | lbtr 139 | . . . 4 a ≤ (a ∪ c)⊥ ⊥ |
| 4 | oa4lem1.1 | . . . 4 a ≤ b⊥ | |
| 5 | 3, 4 | ler2an 173 | . . 3 a ≤ ((a ∪ c)⊥ ⊥ ∩ b⊥ ) |
| 6 | 5 | lelor 166 | . 2 (b ∪ a) ≤ (b ∪ ((a ∪ c)⊥ ⊥ ∩ b⊥ )) |
| 7 | ax-a2 31 | . 2 (a ∪ b) = (b ∪ a) | |
| 8 | df-i2 45 | . 2 ((a ∪ c)⊥ →2 b) = (b ∪ ((a ∪ c)⊥ ⊥ ∩ b⊥ )) | |
| 9 | 6, 7, 8 | le3tr1 140 | 1 (a ∪ b) ≤ ((a ∪ c)⊥ →2 b) |
| Colors of variables: term |
| Syntax hints: ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →2 wi2 13 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i2 45 df-le1 130 df-le2 131 |
| This theorem is referenced by: oa4lem3 939 |
| Copyright terms: Public domain | W3C validator |