Proof of Theorem oa4to6
Step | Hyp | Ref
| Expression |
1 | | oa4to6.oa6.1 |
. . . . 5
a ≤ b⊥ |
2 | 1 | lecon3 157 |
. . . 4
b ≤ a⊥ |
3 | 2 | lecon 154 |
. . 3
a⊥
⊥ ≤ b⊥ |
4 | | oa4to6.oa6.2 |
. . . . 5
c ≤ d⊥ |
5 | 4 | lecon3 157 |
. . . 4
d ≤ c⊥ |
6 | 5 | lecon 154 |
. . 3
c⊥
⊥ ≤ d⊥ |
7 | | oa4to6.oa6.3 |
. . . . 5
e ≤ f⊥ |
8 | 7 | lecon3 157 |
. . . 4
f ≤ e⊥ |
9 | 8 | lecon 154 |
. . 3
e⊥
⊥ ≤ f⊥ |
10 | | id 59 |
. . 3
(((a⊥ ∩
b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ )) = (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ )) |
11 | | oa4to6.oa4 |
. . . 4
((h →1 g) ∩ (h
∪ (j ∩ (((h ∩ j) ∪
((h →1 g) ∩ (j
→1 g))) ∪ (((h ∩ k) ∪
((h →1 g) ∩ (k
→1 g))) ∩ ((j ∩ k) ∪
((j →1 g) ∩ (k
→1 g)))))))) ≤ g |
12 | | oa4to6.5 |
. . . . . 6
h = a⊥ |
13 | | oa4to6.4 |
. . . . . 6
g = (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ )) |
14 | 12, 13 | ud1lem0ab 257 |
. . . . 5
(h →1 g) = (a⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) |
15 | | oa4to6.6 |
. . . . . . 7
j = c⊥ |
16 | 12, 15 | 2an 79 |
. . . . . . . . 9
(h ∩ j) = (a⊥ ∩ c⊥ ) |
17 | 15, 13 | ud1lem0ab 257 |
. . . . . . . . . 10
(j →1 g) = (c⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) |
18 | 14, 17 | 2an 79 |
. . . . . . . . 9
((h →1 g) ∩ (j
→1 g)) = ((a⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (c⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ )))) |
19 | 16, 18 | 2or 72 |
. . . . . . . 8
((h ∩ j) ∪ ((h
→1 g) ∩ (j →1 g))) = ((a⊥ ∩ c⊥ ) ∪ ((a⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (c⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))))) |
20 | | oa4to6.7 |
. . . . . . . . . . 11
k = e⊥ |
21 | 12, 20 | 2an 79 |
. . . . . . . . . 10
(h ∩ k) = (a⊥ ∩ e⊥ ) |
22 | 20, 13 | ud1lem0ab 257 |
. . . . . . . . . . 11
(k →1 g) = (e⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) |
23 | 14, 22 | 2an 79 |
. . . . . . . . . 10
((h →1 g) ∩ (k
→1 g)) = ((a⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (e⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ )))) |
24 | 21, 23 | 2or 72 |
. . . . . . . . 9
((h ∩ k) ∪ ((h
→1 g) ∩ (k →1 g))) = ((a⊥ ∩ e⊥ ) ∪ ((a⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (e⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))))) |
25 | 15, 20 | 2an 79 |
. . . . . . . . . 10
(j ∩ k) = (c⊥ ∩ e⊥ ) |
26 | 17, 22 | 2an 79 |
. . . . . . . . . 10
((j →1 g) ∩ (k
→1 g)) = ((c⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (e⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ )))) |
27 | 25, 26 | 2or 72 |
. . . . . . . . 9
((j ∩ k) ∪ ((j
→1 g) ∩ (k →1 g))) = ((c⊥ ∩ e⊥ ) ∪ ((c⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (e⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))))) |
28 | 24, 27 | 2an 79 |
. . . . . . . 8
(((h ∩ k) ∪ ((h
→1 g) ∩ (k →1 g))) ∩ ((j
∩ k) ∪ ((j →1 g) ∩ (k
→1 g)))) = (((a⊥ ∩ e⊥ ) ∪ ((a⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (e⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))))) ∩ ((c⊥ ∩ e⊥ ) ∪ ((c⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (e⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ )))))) |
29 | 19, 28 | 2or 72 |
. . . . . . 7
(((h ∩ j) ∪ ((h
→1 g) ∩ (j →1 g))) ∪ (((h
∩ k) ∪ ((h →1 g) ∩ (k
→1 g))) ∩ ((j ∩ k) ∪
((j →1 g) ∩ (k
→1 g))))) = (((a⊥ ∩ c⊥ ) ∪ ((a⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (c⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))))) ∪ (((a⊥ ∩ e⊥ ) ∪ ((a⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (e⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))))) ∩ ((c⊥ ∩ e⊥ ) ∪ ((c⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (e⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))))))) |
30 | 15, 29 | 2an 79 |
. . . . . 6
(j ∩ (((h ∩ j) ∪
((h →1 g) ∩ (j
→1 g))) ∪ (((h ∩ k) ∪
((h →1 g) ∩ (k
→1 g))) ∩ ((j ∩ k) ∪
((j →1 g) ∩ (k
→1 g)))))) = (c⊥ ∩ (((a⊥ ∩ c⊥ ) ∪ ((a⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (c⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))))) ∪ (((a⊥ ∩ e⊥ ) ∪ ((a⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (e⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))))) ∩ ((c⊥ ∩ e⊥ ) ∪ ((c⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (e⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ )))))))) |
31 | 12, 30 | 2or 72 |
. . . . 5
(h ∪ (j ∩ (((h
∩ j) ∪ ((h →1 g) ∩ (j
→1 g))) ∪ (((h ∩ k) ∪
((h →1 g) ∩ (k
→1 g))) ∩ ((j ∩ k) ∪
((j →1 g) ∩ (k
→1 g))))))) = (a⊥ ∪ (c⊥ ∩ (((a⊥ ∩ c⊥ ) ∪ ((a⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (c⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))))) ∪ (((a⊥ ∩ e⊥ ) ∪ ((a⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (e⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))))) ∩ ((c⊥ ∩ e⊥ ) ∪ ((c⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (e⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))))))))) |
32 | 14, 31 | 2an 79 |
. . . 4
((h →1 g) ∩ (h
∪ (j ∩ (((h ∩ j) ∪
((h →1 g) ∩ (j
→1 g))) ∪ (((h ∩ k) ∪
((h →1 g) ∩ (k
→1 g))) ∩ ((j ∩ k) ∪
((j →1 g) ∩ (k
→1 g)))))))) = ((a⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (a⊥ ∪ (c⊥ ∩ (((a⊥ ∩ c⊥ ) ∪ ((a⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (c⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))))) ∪ (((a⊥ ∩ e⊥ ) ∪ ((a⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (e⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))))) ∩ ((c⊥ ∩ e⊥ ) ∪ ((c⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (e⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ )))))))))) |
33 | 11, 32, 13 | le3tr2 141 |
. . 3
((a⊥ →1
(((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (a⊥ ∪ (c⊥ ∩ (((a⊥ ∩ c⊥ ) ∪ ((a⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (c⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))))) ∪ (((a⊥ ∩ e⊥ ) ∪ ((a⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (e⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))))) ∩ ((c⊥ ∩ e⊥ ) ∪ ((c⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))) ∩ (e⊥ →1 (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ )))))))))) ≤ (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ )) |
34 | 3, 6, 9, 10, 33 | oa4to6dual 964 |
. 2
(b⊥ ∩ (a⊥ ∪ (c⊥ ∩ (((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ )) ∪ (((a⊥ ∩ e⊥ ) ∪ (b⊥ ∩ f⊥ )) ∩ ((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥ ))))))) ≤ (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ )) |
35 | 34 | oa6fromdual 953 |
1
(((a ∪ b) ∩ (c
∪ d)) ∩ (e ∪ f)) ≤
(b ∪ (a ∩ (c ∪
(((a ∪ c) ∩ (b
∪ d)) ∩ (((a ∪ e) ∩
(b ∪ f)) ∪ ((c
∪ e) ∩ (d ∪ f))))))) |