| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > le0 | GIF version | ||
| Description: 0 is less than or equal to anything. (Contributed by NM, 30-Aug-1997.) |
| Ref | Expression |
|---|---|
| le0 | 0 ≤ a |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-a2 31 | . . 3 (0 ∪ a) = (a ∪ 0) | |
| 2 | or0 102 | . . 3 (a ∪ 0) = a | |
| 3 | 1, 2 | ax-r2 36 | . 2 (0 ∪ a) = a |
| 4 | 3 | df-le1 130 | 1 0 ≤ a |
| Colors of variables: term |
| Syntax hints: ≤ wle 2 ∪ wo 6 0wf 9 |
| This theorem was proved from axioms: ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-t 41 df-f 42 df-le1 130 |
| This theorem is referenced by: go1 343 ortha 438 ud4lem1a 577 mlalem 832 mh 879 gomaex4 900 oa3-6to3 987 oa64v 1031 vneulem7 1137 vneulemexp 1148 |
| Copyright terms: Public domain | W3C validator |