Proof of Theorem oa6v4v
Step | Hyp | Ref
| Expression |
1 | | oa6v4v.1 |
. 2
(((a ∪ b) ∩ (c
∪ d)) ∩ (e ∪ f)) ≤
(b ∪ (a ∩ (c ∪
(((a ∪ c) ∩ (b
∪ d)) ∩ (((a ∪ e) ∩
(b ∪ f)) ∪ ((c
∪ e) ∩ (d ∪ f))))))) |
2 | | oa6v4v.2 |
. . . . . 6
e = 0 |
3 | | oa6v4v.3 |
. . . . . 6
f = 1 |
4 | 2, 3 | 2or 72 |
. . . . 5
(e ∪ f) = (0 ∪ 1) |
5 | | or0r 103 |
. . . . 5
(0 ∪ 1) = 1 |
6 | 4, 5 | ax-r2 36 |
. . . 4
(e ∪ f) = 1 |
7 | 6 | lan 77 |
. . 3
(((a ∪ b) ∩ (c
∪ d)) ∩ (e ∪ f)) =
(((a ∪ b) ∩ (c
∪ d)) ∩ 1) |
8 | | an1 106 |
. . 3
(((a ∪ b) ∩ (c
∪ d)) ∩ 1) = ((a ∪ b) ∩
(c ∪ d)) |
9 | 7, 8 | ax-r2 36 |
. 2
(((a ∪ b) ∩ (c
∪ d)) ∩ (e ∪ f)) =
((a ∪ b) ∩ (c
∪ d)) |
10 | 2 | lor 70 |
. . . . . . . . . . 11
(a ∪ e) = (a ∪
0) |
11 | | or0 102 |
. . . . . . . . . . 11
(a ∪ 0) = a |
12 | 10, 11 | ax-r2 36 |
. . . . . . . . . 10
(a ∪ e) = a |
13 | 3 | lor 70 |
. . . . . . . . . . 11
(b ∪ f) = (b ∪
1) |
14 | | or1 104 |
. . . . . . . . . . 11
(b ∪ 1) = 1 |
15 | 13, 14 | ax-r2 36 |
. . . . . . . . . 10
(b ∪ f) = 1 |
16 | 12, 15 | 2an 79 |
. . . . . . . . 9
((a ∪ e) ∩ (b
∪ f)) = (a ∩ 1) |
17 | | an1 106 |
. . . . . . . . 9
(a ∩ 1) = a |
18 | 16, 17 | ax-r2 36 |
. . . . . . . 8
((a ∪ e) ∩ (b
∪ f)) = a |
19 | 2 | lor 70 |
. . . . . . . . . . 11
(c ∪ e) = (c ∪
0) |
20 | | or0 102 |
. . . . . . . . . . 11
(c ∪ 0) = c |
21 | 19, 20 | ax-r2 36 |
. . . . . . . . . 10
(c ∪ e) = c |
22 | 3 | lor 70 |
. . . . . . . . . . 11
(d ∪ f) = (d ∪
1) |
23 | | or1 104 |
. . . . . . . . . . 11
(d ∪ 1) = 1 |
24 | 22, 23 | ax-r2 36 |
. . . . . . . . . 10
(d ∪ f) = 1 |
25 | 21, 24 | 2an 79 |
. . . . . . . . 9
((c ∪ e) ∩ (d
∪ f)) = (c ∩ 1) |
26 | | an1 106 |
. . . . . . . . 9
(c ∩ 1) = c |
27 | 25, 26 | ax-r2 36 |
. . . . . . . 8
((c ∪ e) ∩ (d
∪ f)) = c |
28 | 18, 27 | 2or 72 |
. . . . . . 7
(((a ∪ e) ∩ (b
∪ f)) ∪ ((c ∪ e) ∩
(d ∪ f))) = (a ∪
c) |
29 | 28 | lan 77 |
. . . . . 6
(((a ∪ c) ∩ (b
∪ d)) ∩ (((a ∪ e) ∩
(b ∪ f)) ∪ ((c
∪ e) ∩ (d ∪ f)))) =
(((a ∪ c) ∩ (b
∪ d)) ∩ (a ∪ c)) |
30 | | an32 83 |
. . . . . . 7
(((a ∪ c) ∩ (b
∪ d)) ∩ (a ∪ c)) =
(((a ∪ c) ∩ (a
∪ c)) ∩ (b ∪ d)) |
31 | | anidm 111 |
. . . . . . . 8
((a ∪ c) ∩ (a
∪ c)) = (a ∪ c) |
32 | 31 | ran 78 |
. . . . . . 7
(((a ∪ c) ∩ (a
∪ c)) ∩ (b ∪ d)) =
((a ∪ c) ∩ (b
∪ d)) |
33 | 30, 32 | ax-r2 36 |
. . . . . 6
(((a ∪ c) ∩ (b
∪ d)) ∩ (a ∪ c)) =
((a ∪ c) ∩ (b
∪ d)) |
34 | 29, 33 | ax-r2 36 |
. . . . 5
(((a ∪ c) ∩ (b
∪ d)) ∩ (((a ∪ e) ∩
(b ∪ f)) ∪ ((c
∪ e) ∩ (d ∪ f)))) =
((a ∪ c) ∩ (b
∪ d)) |
35 | 34 | lor 70 |
. . . 4
(c ∪ (((a ∪ c) ∩
(b ∪ d)) ∩ (((a
∪ e) ∩ (b ∪ f))
∪ ((c ∪ e) ∩ (d
∪ f))))) = (c ∪ ((a
∪ c) ∩ (b ∪ d))) |
36 | 35 | lan 77 |
. . 3
(a ∩ (c ∪ (((a
∪ c) ∩ (b ∪ d))
∩ (((a ∪ e) ∩ (b
∪ f)) ∪ ((c ∪ e) ∩
(d ∪ f)))))) = (a
∩ (c ∪ ((a ∪ c) ∩
(b ∪ d)))) |
37 | 36 | lor 70 |
. 2
(b ∪ (a ∩ (c ∪
(((a ∪ c) ∩ (b
∪ d)) ∩ (((a ∪ e) ∩
(b ∪ f)) ∪ ((c
∪ e) ∩ (d ∪ f)))))))
= (b ∪ (a ∩ (c ∪
((a ∪ c) ∩ (b
∪ d))))) |
38 | 1, 9, 37 | le3tr2 141 |
1
((a ∪ b) ∩ (c
∪ d)) ≤ (b ∪ (a ∩
(c ∪ ((a ∪ c) ∩
(b ∪ d))))) |