Proof of Theorem oa6fromdual
| Step | Hyp | Ref
| Expression |
| 1 | | oa6fromdual.1 |
. . 3
(b⊥ ∩ (a⊥ ∪ (c⊥ ∩ (((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ )) ∪ (((a⊥ ∩ e⊥ ) ∪ (b⊥ ∩ f⊥ )) ∩ ((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥ ))))))) ≤ (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ )) |
| 2 | 1 | lecon 154 |
. 2
(((a⊥ ∩
b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))⊥ ≤
(b⊥ ∩ (a⊥ ∪ (c⊥ ∩ (((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ )) ∪ (((a⊥ ∩ e⊥ ) ∪ (b⊥ ∩ f⊥ )) ∩ ((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥
)))))))⊥ |
| 3 | | oran 87 |
. . . . . 6
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
| 4 | | oran 87 |
. . . . . 6
(c ∪ d) = (c⊥ ∩ d⊥
)⊥ |
| 5 | 3, 4 | 2an 79 |
. . . . 5
((a ∪ b) ∩ (c
∪ d)) = ((a⊥ ∩ b⊥ )⊥ ∩
(c⊥ ∩ d⊥ )⊥
) |
| 6 | | anor3 90 |
. . . . 5
((a⊥ ∩ b⊥ )⊥ ∩
(c⊥ ∩ d⊥ )⊥ ) =
((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥
))⊥ |
| 7 | 5, 6 | ax-r2 36 |
. . . 4
((a ∪ b) ∩ (c
∪ d)) = ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥
))⊥ |
| 8 | | oran 87 |
. . . 4
(e ∪ f) = (e⊥ ∩ f⊥
)⊥ |
| 9 | 7, 8 | 2an 79 |
. . 3
(((a ∪ b) ∩ (c
∪ d)) ∩ (e ∪ f)) =
(((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ ))⊥ ∩
(e⊥ ∩ f⊥ )⊥
) |
| 10 | | anor3 90 |
. . 3
(((a⊥ ∩
b⊥ ) ∪ (c⊥ ∩ d⊥ ))⊥ ∩
(e⊥ ∩ f⊥ )⊥ ) =
(((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥
))⊥ |
| 11 | 9, 10 | ax-r2 36 |
. 2
(((a ∪ b) ∩ (c
∪ d)) ∩ (e ∪ f)) =
(((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥
))⊥ |
| 12 | | ax-a1 30 |
. . . 4
b = b⊥
⊥ |
| 13 | | ax-a1 30 |
. . . . . 6
a = a⊥
⊥ |
| 14 | | ax-a1 30 |
. . . . . . . 8
c = c⊥
⊥ |
| 15 | | oran 87 |
. . . . . . . . . . . 12
(a ∪ c) = (a⊥ ∩ c⊥
)⊥ |
| 16 | | oran 87 |
. . . . . . . . . . . 12
(b ∪ d) = (b⊥ ∩ d⊥
)⊥ |
| 17 | 15, 16 | 2an 79 |
. . . . . . . . . . 11
((a ∪ c) ∩ (b
∪ d)) = ((a⊥ ∩ c⊥ )⊥ ∩
(b⊥ ∩ d⊥ )⊥
) |
| 18 | | anor3 90 |
. . . . . . . . . . 11
((a⊥ ∩ c⊥ )⊥ ∩
(b⊥ ∩ d⊥ )⊥ ) =
((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥
))⊥ |
| 19 | 17, 18 | ax-r2 36 |
. . . . . . . . . 10
((a ∪ c) ∩ (b
∪ d)) = ((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥
))⊥ |
| 20 | | oran 87 |
. . . . . . . . . . . . . 14
(a ∪ e) = (a⊥ ∩ e⊥
)⊥ |
| 21 | | oran 87 |
. . . . . . . . . . . . . 14
(b ∪ f) = (b⊥ ∩ f⊥
)⊥ |
| 22 | 20, 21 | 2an 79 |
. . . . . . . . . . . . 13
((a ∪ e) ∩ (b
∪ f)) = ((a⊥ ∩ e⊥ )⊥ ∩
(b⊥ ∩ f⊥ )⊥
) |
| 23 | | anor3 90 |
. . . . . . . . . . . . 13
((a⊥ ∩ e⊥ )⊥ ∩
(b⊥ ∩ f⊥ )⊥ ) =
((a⊥ ∩ e⊥ ) ∪ (b⊥ ∩ f⊥
))⊥ |
| 24 | 22, 23 | ax-r2 36 |
. . . . . . . . . . . 12
((a ∪ e) ∩ (b
∪ f)) = ((a⊥ ∩ e⊥ ) ∪ (b⊥ ∩ f⊥
))⊥ |
| 25 | | oran 87 |
. . . . . . . . . . . . . 14
(c ∪ e) = (c⊥ ∩ e⊥
)⊥ |
| 26 | | oran 87 |
. . . . . . . . . . . . . 14
(d ∪ f) = (d⊥ ∩ f⊥
)⊥ |
| 27 | 25, 26 | 2an 79 |
. . . . . . . . . . . . 13
((c ∪ e) ∩ (d
∪ f)) = ((c⊥ ∩ e⊥ )⊥ ∩
(d⊥ ∩ f⊥ )⊥
) |
| 28 | | anor3 90 |
. . . . . . . . . . . . 13
((c⊥ ∩ e⊥ )⊥ ∩
(d⊥ ∩ f⊥ )⊥ ) =
((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥
))⊥ |
| 29 | 27, 28 | ax-r2 36 |
. . . . . . . . . . . 12
((c ∪ e) ∩ (d
∪ f)) = ((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥
))⊥ |
| 30 | 24, 29 | 2or 72 |
. . . . . . . . . . 11
(((a ∪ e) ∩ (b
∪ f)) ∪ ((c ∪ e) ∩
(d ∪ f))) = (((a⊥ ∩ e⊥ ) ∪ (b⊥ ∩ f⊥ ))⊥ ∪
((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥ ))⊥
) |
| 31 | | oran3 93 |
. . . . . . . . . . 11
(((a⊥ ∩
e⊥ ) ∪ (b⊥ ∩ f⊥ ))⊥ ∪
((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥ ))⊥ ) =
(((a⊥ ∩ e⊥ ) ∪ (b⊥ ∩ f⊥ )) ∩ ((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥
)))⊥ |
| 32 | 30, 31 | ax-r2 36 |
. . . . . . . . . 10
(((a ∪ e) ∩ (b
∪ f)) ∪ ((c ∪ e) ∩
(d ∪ f))) = (((a⊥ ∩ e⊥ ) ∪ (b⊥ ∩ f⊥ )) ∩ ((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥
)))⊥ |
| 33 | 19, 32 | 2an 79 |
. . . . . . . . 9
(((a ∪ c) ∩ (b
∪ d)) ∩ (((a ∪ e) ∩
(b ∪ f)) ∪ ((c
∪ e) ∩ (d ∪ f)))) =
(((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ ))⊥ ∩
(((a⊥ ∩ e⊥ ) ∪ (b⊥ ∩ f⊥ )) ∩ ((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥ )))⊥
) |
| 34 | | anor3 90 |
. . . . . . . . 9
(((a⊥ ∩
c⊥ ) ∪ (b⊥ ∩ d⊥ ))⊥ ∩
(((a⊥ ∩ e⊥ ) ∪ (b⊥ ∩ f⊥ )) ∩ ((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥ )))⊥ ) =
(((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ )) ∪ (((a⊥ ∩ e⊥ ) ∪ (b⊥ ∩ f⊥ )) ∩ ((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥
))))⊥ |
| 35 | 33, 34 | ax-r2 36 |
. . . . . . . 8
(((a ∪ c) ∩ (b
∪ d)) ∩ (((a ∪ e) ∩
(b ∪ f)) ∪ ((c
∪ e) ∩ (d ∪ f)))) =
(((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ )) ∪ (((a⊥ ∩ e⊥ ) ∪ (b⊥ ∩ f⊥ )) ∩ ((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥
))))⊥ |
| 36 | 14, 35 | 2or 72 |
. . . . . . 7
(c ∪ (((a ∪ c) ∩
(b ∪ d)) ∩ (((a
∪ e) ∩ (b ∪ f))
∪ ((c ∪ e) ∩ (d
∪ f))))) = (c⊥ ⊥ ∪
(((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ )) ∪ (((a⊥ ∩ e⊥ ) ∪ (b⊥ ∩ f⊥ )) ∩ ((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥ ))))⊥
) |
| 37 | | oran3 93 |
. . . . . . 7
(c⊥
⊥ ∪ (((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ )) ∪ (((a⊥ ∩ e⊥ ) ∪ (b⊥ ∩ f⊥ )) ∩ ((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥ ))))⊥ ) =
(c⊥ ∩ (((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ )) ∪ (((a⊥ ∩ e⊥ ) ∪ (b⊥ ∩ f⊥ )) ∩ ((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥
)))))⊥ |
| 38 | 36, 37 | ax-r2 36 |
. . . . . 6
(c ∪ (((a ∪ c) ∩
(b ∪ d)) ∩ (((a
∪ e) ∩ (b ∪ f))
∪ ((c ∪ e) ∩ (d
∪ f))))) = (c⊥ ∩ (((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ )) ∪ (((a⊥ ∩ e⊥ ) ∪ (b⊥ ∩ f⊥ )) ∩ ((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥
)))))⊥ |
| 39 | 13, 38 | 2an 79 |
. . . . 5
(a ∩ (c ∪ (((a
∪ c) ∩ (b ∪ d))
∩ (((a ∪ e) ∩ (b
∪ f)) ∪ ((c ∪ e) ∩
(d ∪ f)))))) = (a⊥ ⊥ ∩
(c⊥ ∩ (((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ )) ∪ (((a⊥ ∩ e⊥ ) ∪ (b⊥ ∩ f⊥ )) ∩ ((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥ )))))⊥
) |
| 40 | | anor3 90 |
. . . . 5
(a⊥
⊥ ∩ (c⊥ ∩ (((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ )) ∪ (((a⊥ ∩ e⊥ ) ∪ (b⊥ ∩ f⊥ )) ∩ ((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥ )))))⊥ ) =
(a⊥ ∪ (c⊥ ∩ (((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ )) ∪ (((a⊥ ∩ e⊥ ) ∪ (b⊥ ∩ f⊥ )) ∩ ((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥
))))))⊥ |
| 41 | 39, 40 | ax-r2 36 |
. . . 4
(a ∩ (c ∪ (((a
∪ c) ∩ (b ∪ d))
∩ (((a ∪ e) ∩ (b
∪ f)) ∪ ((c ∪ e) ∩
(d ∪ f)))))) = (a⊥ ∪ (c⊥ ∩ (((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ )) ∪ (((a⊥ ∩ e⊥ ) ∪ (b⊥ ∩ f⊥ )) ∩ ((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥
))))))⊥ |
| 42 | 12, 41 | 2or 72 |
. . 3
(b ∪ (a ∩ (c ∪
(((a ∪ c) ∩ (b
∪ d)) ∩ (((a ∪ e) ∩
(b ∪ f)) ∪ ((c
∪ e) ∩ (d ∪ f)))))))
= (b⊥ ⊥
∪ (a⊥ ∪ (c⊥ ∩ (((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ )) ∪ (((a⊥ ∩ e⊥ ) ∪ (b⊥ ∩ f⊥ )) ∩ ((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥ ))))))⊥
) |
| 43 | | oran3 93 |
. . 3
(b⊥
⊥ ∪ (a⊥ ∪ (c⊥ ∩ (((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ )) ∪ (((a⊥ ∩ e⊥ ) ∪ (b⊥ ∩ f⊥ )) ∩ ((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥ ))))))⊥ ) =
(b⊥ ∩ (a⊥ ∪ (c⊥ ∩ (((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ )) ∪ (((a⊥ ∩ e⊥ ) ∪ (b⊥ ∩ f⊥ )) ∩ ((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥
)))))))⊥ |
| 44 | 42, 43 | ax-r2 36 |
. 2
(b ∪ (a ∩ (c ∪
(((a ∪ c) ∩ (b
∪ d)) ∩ (((a ∪ e) ∩
(b ∪ f)) ∪ ((c
∪ e) ∩ (d ∪ f)))))))
= (b⊥ ∩ (a⊥ ∪ (c⊥ ∩ (((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ )) ∪ (((a⊥ ∩ e⊥ ) ∪ (b⊥ ∩ f⊥ )) ∩ ((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥
)))))))⊥ |
| 45 | 2, 11, 44 | le3tr1 140 |
1
(((a ∪ b) ∩ (c
∪ d)) ∩ (e ∪ f)) ≤
(b ∪ (a ∩ (c ∪
(((a ∪ c) ∩ (b
∪ d)) ∩ (((a ∪ e) ∩
(b ∪ f)) ∪ ((c
∪ e) ∩ (d ∪ f))))))) |