Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > le3tr2 | GIF version |
Description: Transitive inference useful for eliminating definitions. (Contributed by NM, 27-Aug-1997.) |
Ref | Expression |
---|---|
le3tr2.1 | a ≤ b |
le3tr2.2 | a = c |
le3tr2.3 | b = d |
Ref | Expression |
---|---|
le3tr2 | c ≤ d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | le3tr2.1 | . 2 a ≤ b | |
2 | le3tr2.2 | . . 3 a = c | |
3 | 2 | ax-r1 35 | . 2 c = a |
4 | le3tr2.3 | . . 3 b = d | |
5 | 4 | ax-r1 35 | . 2 d = b |
6 | 1, 3, 5 | le3tr1 140 | 1 c ≤ d |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-le1 130 df-le2 131 |
This theorem is referenced by: ka4ot 435 3vded21 817 2oai1u 822 2oalem1 825 3vroa 831 mlaoml 833 sa5 836 neg3antlem2 865 elimconslem 867 elimcons 868 elimcons2 869 kb10iii 893 gomaex3lem6 919 oau 929 oa6v4v 933 oa4v3v 934 distoah2 941 distoah3 942 distoa 944 oa3to4lem6 950 oa6fromdualn 954 oa6to4 958 oa4to6 965 oa8to5 972 oa4to4u 973 oa3-2to2s 990 d3oa 995 mloa 1018 3oa2 1024 dp15lemc 1156 xdp15 1199 xxdp15 1202 xdp45lem 1204 xdp43lem 1205 xdp45 1206 xdp43 1207 3dp43 1208 |
Copyright terms: Public domain | W3C validator |