Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > oaeqv | GIF version |
Description: Weakened OA implies OA). (Contributed by NM, 16-Nov-1998.) |
Ref | Expression |
---|---|
oaeqv.1 | ((a →2 b) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))) ≤ ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c))) |
Ref | Expression |
---|---|
oaeqv | ((a →2 b) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))) ≤ (a →2 c) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lea 160 | . . . 4 ((a →2 b) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))) ≤ (a →2 b) | |
2 | oaeqv.1 | . . . 4 ((a →2 b) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))) ≤ ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c))) | |
3 | 1, 2 | ler2an 173 | . . 3 ((a →2 b) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))) ≤ ((a →2 b) ∩ ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c)))) |
4 | 2oath1 826 | . . 3 ((a →2 b) ∩ ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c)))) = ((a →2 b) ∩ (a →2 c)) | |
5 | 3, 4 | lbtr 139 | . 2 ((a →2 b) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))) ≤ ((a →2 b) ∩ (a →2 c)) |
6 | lear 161 | . 2 ((a →2 b) ∩ (a →2 c)) ≤ (a →2 c) | |
7 | 5, 6 | letr 137 | 1 ((a →2 b) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))) ≤ (a →2 c) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |