Proof of Theorem 3vroa
Step | Hyp | Ref
| Expression |
1 | | df-i2 45 |
. 2
(a →2 c) = (c ∪
(a⊥ ∩ c⊥ )) |
2 | | or12 80 |
. . 3
(c ∪ ((a⊥ ∩ c⊥ ) ∪ (a⊥ ∩ c⊥ ))) = ((a⊥ ∩ c⊥ ) ∪ (c ∪ (a⊥ ∩ c⊥ ))) |
3 | | oridm 110 |
. . . 4
((a⊥ ∩ c⊥ ) ∪ (a⊥ ∩ c⊥ )) = (a⊥ ∩ c⊥ ) |
4 | 3 | lor 70 |
. . 3
(c ∪ ((a⊥ ∩ c⊥ ) ∪ (a⊥ ∩ c⊥ ))) = (c ∪ (a⊥ ∩ c⊥ )) |
5 | | le1 146 |
. . . . . . . . . 10
(a →2 b) ≤ 1 |
6 | | 3vroa.1 |
. . . . . . . . . . . 12
((a →2 b) ∩ ((b
∪ c) →0 ((a →2 b) ∩ (a
→2 c)))) =
1 |
7 | 6 | ax-r1 35 |
. . . . . . . . . . 11
1 = ((a →2 b) ∩ ((b
∪ c) →0 ((a →2 b) ∩ (a
→2 c)))) |
8 | | lea 160 |
. . . . . . . . . . 11
((a →2 b) ∩ ((b
∪ c) →0 ((a →2 b) ∩ (a
→2 c)))) ≤ (a →2 b) |
9 | 7, 8 | bltr 138 |
. . . . . . . . . 10
1 ≤ (a →2
b) |
10 | 5, 9 | lebi 145 |
. . . . . . . . 9
(a →2 b) = 1 |
11 | 10 | ran 78 |
. . . . . . . 8
((a →2 b) ∩ (a
→2 c)) = (1 ∩ (a →2 c)) |
12 | | ancom 74 |
. . . . . . . 8
(1 ∩ (a →2
c)) = ((a →2 c) ∩ 1) |
13 | 11, 12 | ax-r2 36 |
. . . . . . 7
((a →2 b) ∩ (a
→2 c)) = ((a →2 c) ∩ 1) |
14 | | an1 106 |
. . . . . . 7
((a →2 c) ∩ 1) = (a
→2 c) |
15 | 13, 14, 1 | 3tr 65 |
. . . . . 6
((a →2 b) ∩ (a
→2 c)) = (c ∪ (a⊥ ∩ c⊥ )) |
16 | 15 | lor 70 |
. . . . 5
((a⊥ ∩ c⊥ ) ∪ ((a →2 b) ∩ (a
→2 c))) = ((a⊥ ∩ c⊥ ) ∪ (c ∪ (a⊥ ∩ c⊥ ))) |
17 | 16 | ax-r1 35 |
. . . 4
((a⊥ ∩ c⊥ ) ∪ (c ∪ (a⊥ ∩ c⊥ ))) = ((a⊥ ∩ c⊥ ) ∪ ((a →2 b) ∩ (a
→2 c))) |
18 | | le1 146 |
. . . . 5
((a⊥ ∩ c⊥ ) ∪ ((a →2 b) ∩ (a
→2 c))) ≤
1 |
19 | | lear 161 |
. . . . . . . 8
((a →2 b) ∩ ((b
∪ c) →0 ((a →2 b) ∩ (a
→2 c)))) ≤ ((b ∪ c)
→0 ((a →2
b) ∩ (a →2 c))) |
20 | | df-i0 43 |
. . . . . . . . 9
((b ∪ c) →0 ((a →2 b) ∩ (a
→2 c))) = ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c))) |
21 | | anor3 90 |
. . . . . . . . . . 11
(b⊥ ∩ c⊥ ) = (b ∪ c)⊥ |
22 | 21 | ax-r5 38 |
. . . . . . . . . 10
((b⊥ ∩ c⊥ ) ∪ ((a →2 b) ∩ (a
→2 c))) = ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c))) |
23 | 22 | ax-r1 35 |
. . . . . . . . 9
((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c))) = ((b⊥ ∩ c⊥ ) ∪ ((a →2 b) ∩ (a
→2 c))) |
24 | 20, 23 | ax-r2 36 |
. . . . . . . 8
((b ∪ c) →0 ((a →2 b) ∩ (a
→2 c))) = ((b⊥ ∩ c⊥ ) ∪ ((a →2 b) ∩ (a
→2 c))) |
25 | 19, 6, 24 | le3tr2 141 |
. . . . . . 7
1 ≤ ((b⊥ ∩
c⊥ ) ∪ ((a →2 b) ∩ (a
→2 c))) |
26 | | le1 146 |
. . . . . . 7
((b⊥ ∩ c⊥ ) ∪ ((a →2 b) ∩ (a
→2 c))) ≤
1 |
27 | 25, 26 | lebi 145 |
. . . . . 6
1 = ((b⊥ ∩
c⊥ ) ∪ ((a →2 b) ∩ (a
→2 c))) |
28 | 10 | u2lemle2 716 |
. . . . . . . . 9
a ≤ b |
29 | 28 | lecon 154 |
. . . . . . . 8
b⊥ ≤ a⊥ |
30 | 29 | leran 153 |
. . . . . . 7
(b⊥ ∩ c⊥ ) ≤ (a⊥ ∩ c⊥ ) |
31 | 30 | leror 152 |
. . . . . 6
((b⊥ ∩ c⊥ ) ∪ ((a →2 b) ∩ (a
→2 c))) ≤ ((a⊥ ∩ c⊥ ) ∪ ((a →2 b) ∩ (a
→2 c))) |
32 | 27, 31 | bltr 138 |
. . . . 5
1 ≤ ((a⊥ ∩
c⊥ ) ∪ ((a →2 b) ∩ (a
→2 c))) |
33 | 18, 32 | lebi 145 |
. . . 4
((a⊥ ∩ c⊥ ) ∪ ((a →2 b) ∩ (a
→2 c))) =
1 |
34 | 17, 33 | ax-r2 36 |
. . 3
((a⊥ ∩ c⊥ ) ∪ (c ∪ (a⊥ ∩ c⊥ ))) = 1 |
35 | 2, 4, 34 | 3tr2 64 |
. 2
(c ∪ (a⊥ ∩ c⊥ )) = 1 |
36 | 1, 35 | ax-r2 36 |
1
(a →2 c) = 1 |